Skip to main content
Log in

Biodegradation of Acetochlor and 2-methyl-6-ethylaniline by Bacillus subtilis and Pseudomonasfluorescens

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Two bacterial strains, Pseudomonas fluorescens KT3 and Bacillus subtilis 2M6E, isolated from soil utilized acetochlor and 2-methyl-6-ethylaniline (2M6E) as carbon and nitrogen sources, respectively. The strain mixture utilized more than 95% acetochlor within 30 h and nearly 100% 2M6E within 24 h from each initial concentration of 100 mg/L. Although B. subtilis 2M6E could not degrade acetochlor, the strain augmented the degradation rate mediated by P. fluorescens KT3. In its degradation process, KT3 converted acetochlor to 2M6E as an intermediate product. Moreover, Bacillus subtilis 2M6E transformed 2M6E into catechol. The enzyme activities involved in the degradation pathways indicated that both strains transformed the chemicals via an ortho-cleavage pathway. The formation of dual-species biofilms and their participation in biodegradation were also investigated. The obtained results showed that the combination of these strains augmented their biofilm-forming capabilities and enhanced the degradation rates of both acetochlor and 2M6E. This study exemplifies the efficient use of mixed cultures of both suspended and biofilm cells in degrading acetochlor and 2M6E.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Altschul, S.F., Gish, W., Miller, W. Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.

    Article  CAS  PubMed  Google Scholar 

  2. Ashby, J., Tinwell, H., Lefevre, P.A., Williams, J., Kier, L., Adler, I.D., and Clapp, M.J., Evaluation of the mutagenicity of acetochlor to male rat germ cells, Mutat. Res., 1997, vol. 393, pp. 263–281.

    Article  CAS  PubMed  Google Scholar 

  3. Crump, D., Werry, K., Veldhoen, N., Van Aggelen, G., and Helbing, C.C., Exposure to the herbicide acetochlor alters thyroid hormone dependent gene expression and metamorphosis in Xenopus laevis,Environ. Health Perspect., 2002, vol. 110, pp. 1199–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong, W., Chen, Q., Hou, Y., Li, S., Zhuang, K., Huang, F., Zhou, J., Li, Z., Wang, J., Fu, L., Zhang, Z., Huang, Y., Wang, F., and Cui, Z., Metabolic pathway involved in 2M6E degradation by Sphingobium sp. strain MEA3-1 and cloning of the novel flavin-dependent monooxygenase system meaBA, Appl. Environ. Microbiol., 2015, vol. 81, pp. 8254–8264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dorn, E. and Knackmuss, H.J., Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown peudomonad, Biochem. J., 1978, vol. 174, pp. 73–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duc, H.D., Biodegradation of 3-chloroaniline by suspended cells and biofilm of Acinetobacter baumannii GFJ1, Appl. Biol. Chem., 2016, vol. 59, pp. 703–709.

    Article  CAS  Google Scholar 

  7. Duc, H.D., Degradation of chlorotoluenes by Comamonas testosterone KT5, Appl. Biol. Chem., 2017, vol. 60, pp. 457–465.

    Article  Google Scholar 

  8. Ha, D.D., Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT. Biodegradation, 2018, vol. 29, pp. 499–510.

    Article  CAS  PubMed  Google Scholar 

  9. Hill, A.B., Jefferies, P.R., Quistad, G.B., and Casida, J.E., Dialkylquinoneimine metabolites of chloroacetanilide herbicides induce sister chromatid exchanges in cultured human lymphocytes, Mutat. Res., 1997, vol. 395, pp. 159–171.

    Article  CAS  PubMed  Google Scholar 

  10. Hou, Y., Dong, W., Wang, F., Li, J., Shen, W., Li, Y., and Cui, Z., Degradation of acetochlor by a bacterial consortium of Rhodococcus sp. T3-1, Delftia sp. T3-6 and Sphingobium sp. MEA3-1, Lett. Appl. Microbiol., 2014, vol. 59, pp. 35–42.

    Article  CAS  PubMed  Google Scholar 

  11. Hsu, T.S. and Bartha, R., Accelerated mineralization of two organophosphate insecticides in the rhizosphere, Appl. Environ. Microbiol., 1979, vol. 45, pp. 1459–1465.

    Google Scholar 

  12. Jablonkai, I., Microbial and photolytic degradation of the herbicide acetochlor, Int. J. Environ. Anal. Chem., 2000, vol. 78, pp. 1–8.

    Article  CAS  Google Scholar 

  13. Kolpin, D.W., Goolsby, D.A., and Thurman, E.M., Acetochlor in the hydrologic system in the midwestern United States 1994, Environ. Sci. Technol., 1996, vol. 30, pp. 459–464.

    Google Scholar 

  14. Lengyel, Z., and Földényi, R., Acetochlor as a soil pollutant, Environ. Sci. Pollut. Res., 2003, vol. 10, pp. 13–18.

    Article  CAS  Google Scholar 

  15. Li, C., Li, Y., Cheng, X., Feng, L., Xi, C., and Zhang, Y., Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment, Bioresour. Technol., 2013, vol. 131, pp. 390–396.

    Article  CAS  PubMed  Google Scholar 

  16. Li, M., Peng, Li, Z., Xu, J., and Li, S., Establishment and characterization of dual-species biofilms formed from a 3,5-dinitrobenzoic-degrading strain and bacteria with high biofilm-forming capabilities, FEMS Microbiol. Lett., 2008, vol. 278, pp. 15–21.

    Article  CAS  PubMed  Google Scholar 

  17. Li, W., Zha, J.M., Li, Z.L., Yang, L., and Wang, Z., Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus), Aquat. Toxicol., 2009, vol. 94, pp. 87–93.

    Article  CAS  PubMed  Google Scholar 

  18. Li, Y., Chen, Q., Wang, C.-H. Cai, S., He, J., Huang, X., and Li, S.P., Degradation of acetochlor by consortium of two bacterial strains and cloning of a novel amidase gene involved in acetochlor-degrading pathway, Bioresour. Technol., 2013, vol. 148, pp. 628–631.

    Article  CAS  PubMed  Google Scholar 

  19. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    CAS  PubMed  Google Scholar 

  20. Luo, W., Gu, Q., Chen, W., Zhu, X., Duan, Z., and Yu, X., Biodegradation of acetochlor by a newly isolated Pseudomonas strain, Appl. Biochem. Biotechnol., 2015, vol. 176, pp. 636–644.

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, T.O. and Ha, D.D., Degradation of chlorotoluenes and chlorobenzenes by the dual-species biofilm of Comamonas testosteroni strain KT5 and Bacillus subtilis strain DKT, Ann. Microbiol., 2019, vol. 69, pp. 267–277.

    Article  CAS  Google Scholar 

  22. Ni, Y.Y., Zheng, J.W., Zhang, J., and Wang, B., Isolation of chloracetanilide herbicides-degrading bacterium Y3B-1 and its degradability to chloracetanilide herbicides, Chinese J. Appl. Environ Biol., 2011, vol. 17, pp. 711–716.

    CAS  Google Scholar 

  23. O’Toole, G.A. and Kolter, R., Initiation of biofilm formation in Peudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genitic analysis, Mol. Microbiol., 1998, vol. 28, pp. 449–461.

    Article  PubMed  Google Scholar 

  24. Pandey, G. and Jain, R.K., Bacterial chemotaxis toward environmental pollutants: role in bioremediation, Appl. Environ. Microbiol., 2002, vol. 68, pp. 5789–5795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paul, D., Pandey, G., Pandey, J., and Jain, R.K., Accessing microbial diversity for bioremediation and environmental restoration, Trends Biotechnol., 2005, vol. 23, pp. 135–142.

    Article  CAS  PubMed  Google Scholar 

  26. Perumbakkam, S., Hess, T.F., and Crawford, R.L., A bioremediation approach using natural transformation in pure-culture and mixed-population biofilms, Biodegradation, 2006, vol. 17, pp. 545–557.

    Article  CAS  PubMed  Google Scholar 

  27. Rickard, A.H., Gilbert, P., and Handley, P.S., Influence of growth environment on coaggregation between freshwater biofilm bacteria, Appl. Microbiol., 2004, vol. 96, pp. 1367–1373.

    Article  CAS  Google Scholar 

  28. Rickard, A.H., Leach, S.A., Hall, L.S., Buswell, C.M., High, N.J., and Handley, P.S., Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria, A-ppl. Environ. Microbiol., 2002, vol. 68, pp. 3644–3650.

    Article  CAS  Google Scholar 

  29. Singh, R., Paul, D., and Jain, R., Biofilms: implications in bioremediation, Trends Microbiol., 2006, vol. 14, pp. 389–397.

    Article  CAS  PubMed  Google Scholar 

  30. Souissi, Y., Bourcier, S., Ait-Aissa, S. Maillot-Maréchal, E., Bouchonnet, S., Genty, C., and Sablier, M., Using mass spectrometry to highlight structures of degradation compounds obtained by photolysis of chloroacetamides: case of acetochlor, J. Chromatogr. A, 2013, vol. 1310, pp. 98–112.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, X., Zhou, Q., Ren, W., Li, X., and Ren, L., Spatial and temporal distribution of acetochlor in sediments and riparian soils of the Songhua River Basin in northeastern China, J. Environ. Sci., 2011, vol. 23, pp. 1684–1690.

    Article  CAS  Google Scholar 

  32. Urata, M., Uchida, E., Nojiri, H., Omori, T., Obo, R., Miyaura, N., and Ouchiyama N., Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment, Biosci. Biotechnol. Biochem., 2004, vol. 68, pp. 2457–2465.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, N., Jing, B., Ge, F., and Liu, X., The fate of herbicide acetochlor and its toxicity to Eisenia fetida under laboratory conditions, Chemosphere, 2006, vol. 62, pp. 1366–1373.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, C., Ding, J., Qiu, J., and Ma, Y., Biodegradation of acetochlor by a newly isolated Achromobacter sp. strain D-12, J. Environ. Sci. Health. B, 2013, vol. 48, pp. 960–966.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, J., Qiu, X.H., Dai, J.Y., et al., Isolation and characterization of a Pseudomonas oleovorans degrading the chloroacetamide herbicide acetochlor, Biodegradation, 2006, vol. 17, pp. 219–225.

    Article  CAS  PubMed  Google Scholar 

  36. Xu, J., Yang, M., Dai, J., Cao, H., Yang, M., Zhang, J., and Xu, M., Degradation of acetochlor by four microbial communities, Bioresour. Technol., 2008, vol. 99, pp. 7797–7802.

    Article  CAS  PubMed  Google Scholar 

  37. Ye, C.M., Wang, X.J., and Zheng, H.H., Biodegradation of acetanilide herbicides acetochlor and butachlor in soil, J. Environ. Sci., 2002, vol. 14, pp. 524–529.

    CAS  Google Scholar 

  38. Yoshida, S., Ogawa, N., Fujii, T., and Tsushima, S., Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1, J. Appl. Microbiol., 2009, vol. 106, pp. 790–800.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, J., Zheng, J.W., Liang, B., Wang, C.H., Cai, S., Ni, Y.Y., He, J., and Li, S.P., Biodegradation of chloroacetanilide herbicides by Paracoccus sp. FLY-8 in vitro,J. Agric. Food. Chem., 2011, vol. 59, pp. 4614–4621.

    Article  CAS  PubMed  Google Scholar 

  40. Zheng, J.W., Li, R., Zhu, J.C., and Zhang, J., Degradation of the chloroacetamide herbicide butachlor by Catellibacterium caeni sp. nov. DCA-1T, Int. Biodeter. Biodegr., 2012, vol. 73, pp. 16–22.

    Article  CAS  Google Scholar 

  41. Zhu, J.S., Qiao, X.W., Wang, J., and Qin, S., Degradation and the influencing factors of acetochlor in soils, J. Agro-Environ. Sci., 2004, vol. 23, pp. 1025–1029.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Dong Thap University for the research group of environmental science. We are very thankful for all support and encouragement while conducting this research. We are also thankful anonymous reviewers whose suggestions helped improve and clarify this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Duc.

Ethics declarations

Conflicts of interest. The authors declare that there are no conflicts of interest. Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, H.D., Oanh, N.T. Biodegradation of Acetochlor and 2-methyl-6-ethylaniline by Bacillus subtilis and Pseudomonasfluorescens. Microbiology 88, 729–738 (2019). https://doi.org/10.1134/S0026261719060031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261719060031

Keywords:

Navigation