Skip to main content
Log in

Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Thauera sp. strain DKT isolated from sediment utilized 2,4-dichlorophenoxyacetic acid (2,4D) and its relative compounds as sole carbon and energy sources under anaerobic conditions and used nitrate as an electron acceptor. The determination of 2,4D utilization at different concentrations showed that the utilization curve fitted well with the Edward model with the maximum degradation rate as 0.017 ± 0.002 mM/day. The supplementation of cosubstrates (glucose, acetate, sucrose, humate and succinate) increased the degradation rates of all tested chemical substrates in both liquid and sediment slurry media. Thauera sp. strain DKT transformed 2,4D to 2,4-dichlorophenol (2,4DCP) through reductive side-chain removal then dechlorinated 2,4DCP to 2-chlorophenol (2CP), 4-chlorophenol (4CP) and phenol before complete degradation. The relative degradation rates by the isolate in liquid media were: phenol > 2,4DCP > 2CP > 4CP > 2,4D ≈ 3CP. DKT augmentation in sediment slurry enhanced the degradation rates of 2,4D and chlorophenols. The anaerobic degradation rates in the slurry were significantly slower compared to the rates in liquid media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Berestovskaya YY, Ignatov VV, Markina LN, Kamenev AA, Makarov OE (2000) Degradation of ortho-chlorophenol, parachlorophenol, and 2,4-dichlorophenoxyacetic acid by the bacterial community of anaerobic sludge. Microbiology 69(4):397–400

    Article  CAS  Google Scholar 

  • Bortolozzi AA, Evangelista De Duffard AM, Duffard RO, Antonelli MC (2004) Effects of 2,4-dichlorophenoxyacetic acid exposure on dopamine D2-like receptors in rat brain. Neurotoxicol Teratol 26(4):599–605

    Article  PubMed  CAS  Google Scholar 

  • Bouchard R, Beaudet R, Villemur R, McSween G, Lepine F, Bisaillon J-G (1996) Isolation and characterization of Desulfitobacterium frappieri sp. nov. an anaerobic bacterium which reductively dechlorinates PCP to 3-CP. Int J Syst Evol Microbiol 46(4):1010–1015

    CAS  Google Scholar 

  • Boyd SA, Shelton DR, Berry D, Tiedje JM (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microbiol 46(1):50–54

    PubMed  PubMed Central  CAS  Google Scholar 

  • Boyle AW, Knight VK, Häggblom MM, Young LY (1999) Transformation of 2,4-dichlorophenoxyacetic acid in four different marine and estuarine sediments: effects of sulfate, hydrogen and acetate on dehalogenation and side-chain cleavage. FEMS Microbiol Ecol 29(1):105–113

    Article  CAS  Google Scholar 

  • Breitenstein A, Saano A, Salkinoja-Salonen M, Andreesen JR, Lechner U (2001) Analysis of a 2,4,6-trichlorophenol-dehalogenating enrichment culture and isolation of the dehalogenating member Desulfitobacterium frappieri strain TCP-A. Arch Microbiol 175(2):133–142

    Article  PubMed  CAS  Google Scholar 

  • Bryant FO (1992) Biodegradation of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by dichlorophenoladapted microorganisms from freshwater, anaerobic sediments. Appl Microbiol Biotechnol 38(2):276–281

    Article  CAS  Google Scholar 

  • Celis E, Elefsiniotis P, Singhal N (2008) Biodegradation of agricultural herbicides in sequencing batch reactors under aerobic or anaerobic conditions. Water Res 42(12):3218–3224

    Article  PubMed  CAS  Google Scholar 

  • Chang BV, Liu JY, Yuan SY (1998) Dechlorination of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid in soil. Sci Total Environ 215(2–1):1–8

    Article  CAS  Google Scholar 

  • Chang Y-C, Reddy MV, Umemoto H, Sato Y, Kang M-H, Yajima Y, Kikuchi S (2016) Bio-augmentation of Cupriavidus sp. CY-1 into 2,4-D contaminated soil: microbial community analysis by culture dependent and independent techniques. PLoS ONE 10:e0145057

    Article  Google Scholar 

  • Charles JM, Hanley TR, Wilson RD, van Ravenzwaay B, Bus JS (2001) Development toxicity studies in rats an rabbits on 2,4-dichlorophenoxyacetic acid an its forms. Toxicol Sci 60(1):121–131

    Article  PubMed  CAS  Google Scholar 

  • Chinalia FA, Killham KS (2006) 2,4-Dichlorophenoxyacetic acid (2,4-D) biodegradation in river sediments of Northeast Scotland and its effect on the microbial communities (PLFA and DGGE). Chemosphere 64(10):1675–1683

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Kahng HY, Kim CK, Kukor JJ, Oh KH (2002) Physiological and cellular responses of the 2,4-D degrading bacterium, Burkholderia cepacia YK-2, to the phenoxyherbicides 2,4-D and 2,4,5-T. Curr Microbiol 45(6):415–422

    Article  PubMed  CAS  Google Scholar 

  • Collins G, Foy C, McHugh S, O’Flaherty V (2005) Anaerobic treatment of 2,4,6-trichlorophenol in an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor at 15C. FEMS Microbiol Ecol 53(1):167–178

    Article  PubMed  CAS  Google Scholar 

  • Cox C (1999) 2,4-D: ecological effects. Herbcide factsheet. J Pestic Reform 19:14–19

    Google Scholar 

  • Czaplicka M (2004) Sources and transformations of chlorophenols in the natural environment. Sci Total Environ 322(1–3):21–39

    Article  PubMed  CAS  Google Scholar 

  • Dai Y, Li N, Zhao Q, Xie S (2015) Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure. Biodegradation 26(2):161–170

    Article  PubMed  CAS  Google Scholar 

  • Duc HD (2016) Biodegradation of 3-chloroaniline by suspended cells and biofilm of Acinetobacter baumannii GFJ1. Appl Biol Chem 59:703–709

    Article  CAS  Google Scholar 

  • Duc HD (2017) Degradation of chlorotoluenes by Comamonas testosterone KT5. Appl Biol Chem 60(4):457–465

    Article  Google Scholar 

  • Duffard R, Garcia G, Rosso S, Bortolozzi A, Madariaga M, di Paolo O, Evangelista de Duffard AM (1996) Central nervous system myelin deficit in rats exposed to 2,4-dichlorophenoxyacetic acid throughout lactation. Neurotoxicol Teratol 18(6):691–696

    Article  PubMed  CAS  Google Scholar 

  • Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12:679–712

    Article  PubMed  CAS  Google Scholar 

  • Frank R, Logan L (1988) Pesticide and industrial chemical residues at the mouth of the grand, Saugeen and Thames rivers, Ontario, Canada, 1981–1985. Arch Environ Contam Toxicol 17(6):741–754

    Article  CAS  Google Scholar 

  • Gerritse J, Renard V, Pedro Gomes TM, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165(2):132–140

    Article  PubMed  CAS  Google Scholar 

  • Gibson SA, Suflita JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: simulation by short-chain organic acids and alcohols. Appl Environ Microbiol 56(6):1825–1832

    PubMed  PubMed Central  CAS  Google Scholar 

  • González AJ, Gallego A, Gemini VL, Papalia M, Radice M, Gutkind G, Planes E, Korol SE (2012) Degradation and detoxification of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by an indigenous Delftia sp. strain in batch and continuous systems. Int Biodeterior Biodegrad 66(1):8–13

    Article  Google Scholar 

  • Greer LE, Shelton DR (1992) Effect of inoculant strain and organic matter content on kinetics of 2,4-dichlorophenoxyacetic acid degradation in soil. Appl Environ Microbiol 58(5):1459–1465

    PubMed  PubMed Central  CAS  Google Scholar 

  • Greer CW, Hawari J, Samson R (1990) Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat. Arch Microbiol 154(4):317–322

    Article  PubMed  CAS  Google Scholar 

  • Häggblom MM, Young LY (1990) Chlorophenol degradation coupled to sulfate reduction. Appl Environ Microbiol 56(11):3255–3260

    PubMed  PubMed Central  Google Scholar 

  • Häggblom MM, Rivera MD, Young LY (1993) Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol 59(4):1162–1167

    PubMed  PubMed Central  Google Scholar 

  • Hope BK, Pillsbury L, Boling B (2012) A state-wide survey in Oregon (USA) of trace metals and organic chemicals in municipal effluent. Sci Total Environ 417–418:263–272

    Article  PubMed  Google Scholar 

  • Hossain HMZ, Kawahata H, Roser BP, Sampei Y, Manaka T, Otani S (2017) Geochemical characteristics of modern river sediments in Myanmar and Thailand: implications for provenance and weathering. Chem Erde-Geochem 77:443–458

    Article  CAS  Google Scholar 

  • Kim CS, Keizer RF, Pritchard JB (1988) 2,4-Dichlorophenoxyacetic acid intoxication increases its accumulation within the brain. Brain Res 440(2):216–226

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Park YI, Dong MS (2005) Effects of 2,4-D and DCP on the DHT-induced androgenic action in human prostate cancer cells. Toxicol Sci 88(1):52–59

    Article  PubMed  CAS  Google Scholar 

  • Klecka G, Persoon C, Currie R (2010) Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures. Rev Environ Contam Toxicol 207:1–93

    PubMed  CAS  Google Scholar 

  • Kolpin D, Barbash J, Gilliom R (2000) Pesticides in Ground Water of the United States, 1992–1996 38:858–863

    CAS  Google Scholar 

  • Konasewich D, Traversy W, Zar H (1978) Great Lakes Water Quality Status Report on Organic and Heavy Metal Contaminants in the Lakes Erie, Michigan, Huron and Superior Basins to the Implementation Committee of the Great Lakes Water Quality Board. International Joint Commission (IJC) Digital Archive

  • Kwangjick L, Johnson VJ, Barry R, Blakley BR (2001) The effect of exposure to a commercial 2,4-D formulation during gestation on the immune response in CD-1 mice. Toxicology 165(1):39–49

    Article  Google Scholar 

  • Liu S-M, Kuo C-E, Hsu T-B (1996) Reductive dechlorination of chlorophenols and PCP in anoxic estuarine sediments. Chemosphere 32(7):1287–1300

    Article  CAS  Google Scholar 

  • Masunaga S, Susarla S, Gundersen JL, Yonezawa Y (1996) Pathways and rate of chlorophenol transformation in anaerobic estuarine sediment. Environ Sci Technol 30(4):1253–1260

    Article  CAS  Google Scholar 

  • Mattsson J, Charles J, Yano B, Cunny L, Wilson R, Bus J (1997) Single-dose and chronic dietary neurotoxicity screening studies on 2,4-dichlorophenoxyacetic acid in rats. Fundam Appl Toxicol 40(1):11–119

    Article  Google Scholar 

  • Michalowicz J, Duda W (2007) Phenols-sources and toxicity. Pol J Environ Stud 16:347–362

    CAS  Google Scholar 

  • Mikesell MD, Boyd SA (1985) Reductive dechlorination of the pesticides 2,4-D, 2,4,5-T and PCP in anaerobic sludges. J Environ Qual 14:337–340

    Article  CAS  Google Scholar 

  • Mohn WW, Kennedy KJ (1992) Limited degradation of chlorophenols by anaerobic sludge granules. Appl Environ Microbiol 58(7):2131–2136

    PubMed  PubMed Central  CAS  Google Scholar 

  • Moody RP, Wester RC, Melendres JL, Maibach HI (1992) Dermal absorption of the phenoxy herbicide 2,4-D dimethylamine in humans: effect of DEET and anatomic site. J Toxicol Environ Health 36(3):241–250

    Article  PubMed  CAS  Google Scholar 

  • Reddy GVB, Joshi DK, Gold MH (1997) Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichornitus squalens. Microbiology 143:2353–2360

    Article  CAS  Google Scholar 

  • Robles-González I, Ríos-Leal E, Ferrera-Cerrato R, Esparza-García F, Rinderkenecht-Seijas N, Poggi-Varaldo HM (2006) Bioremediation of a mineral soil with high contents of clay and organic matter contaminated with herbicide 2,4-dichlorophenoxyacetic acid using slurry bioreactors: effect of electron acceptor and supplementation with an organic carbon source. Process Biochem 41(9):1951–1960

    Article  Google Scholar 

  • Song B, Palleroni NJ, Kerkhof LJ, Haggblom MM (2001) Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51:589–602

    Article  PubMed  CAS  Google Scholar 

  • Suflita JM, Stout J, Tiedje JM (1984) Dechlorination of (2,4,5-trichlorophenoxy)acetic acid by anaerobic microorganisms. J Agric Food Chem 32(2):218–221

    Article  CAS  Google Scholar 

  • Wang Y-T, Muthukrishnan S, Wang Z (1998) Reductive dechlorination of chlorophenols in methanogenic cultures. J Environ Eng 124(3):231–238

    Article  CAS  Google Scholar 

  • Wang YB, Wu CY, Wang XJ, Zhou SG (2009) The role of humic substances in the anaerobic reductive dechlorination of 2,4-dichlorophenoxyacetic acid by Comamonas koreensis strain CY01. J Hazard Mater 164(2–3):941–947

    Article  PubMed  CAS  Google Scholar 

  • Webber MD, Wang C (1995) Industrial organic compounds in selected Canadian soils. Can J Soil Sci 75(4):513–524

    Article  CAS  Google Scholar 

  • WHO (1989) Chlorophenols other than pentachlorophenol, Environmental Health Criteria 93. World Health Organization, Geneva

    Google Scholar 

  • Willemsen RE, Hailey A (2001) Effects of spraying the herbicides 2,4-D and 2,4,5-T on a population of the tortoise Testudo hermanni in southern Greece. Environ Pollut 113(1):71–78

    Article  PubMed  CAS  Google Scholar 

  • Williams WM, Holden PW, Parsons DW, Lorber MN (1988) Pesticides in groundwater data base 1988 Interim report, Office Pesticide Programs. U.S. Environmental Protection Agency, Washington, D. C., p 37

    Google Scholar 

  • Wu C-Y, Zhuang L, Zhou S-G, Li F-B, Li X-M (2010) Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiol Ecol 71(1):106–113

    Article  PubMed  CAS  Google Scholar 

  • Wu CY, Zhuang L, Zhou SG, Yuan Y, Yuan T, Li FB (2013) Humic substance-mediated reduction of iron(III) oxides and degradation of 2,4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5. Microb Biotechnol 6(2):141–149

    Article  PubMed  Google Scholar 

  • Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD (2017) Biodegradation of the herbicide 2,4-dichlorophenoxyacetic acid by a new isolated strain of Achromobacter sp. LZ35. Curr Microbiol 74(2):193–202

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R (2017) Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition. Bioresour Technol 232:146–151

    Article  PubMed  CAS  Google Scholar 

  • Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50(2):447–453

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Wiegel J (1990) Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl Environ Microbiol 56(4):1119–1127

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was carried out at the same time and same place as the determination of anaerobic degradation of chloroanilines. We are very thankful to our families, especially my wife Nguyen Thi Oanh (Dong Thap University, Viet Nam) for all the support provided to do this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Danh Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, D.D. Anaerobic degradation of 2,4-dichlorophenoxyacetic acid by Thauera sp. DKT. Biodegradation 29, 499–510 (2018). https://doi.org/10.1007/s10532-018-9848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-018-9848-7

Keywords

Navigation