Skip to main content
Log in

Degradation of Diuron by a Bacterial Mixture and Shifts in the Bacterial Community During Bioremediation of Contaminated Soil

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Diuron, a phenylurea herbicide, has been extensively applied in controlling a wide range of weeds in several crops. In the current study, a mixed culture of three bacterial strains, i.e., Bacillus subtilis DU1, Acinetobacter baumannii DU, and Pseudomonas sp. DUK, isolated from sugarcane soil, completely degraded diuron and 3,4-DCA in liquid media at 20 mg L−1 within 48 h. During diuron degradation, a few metabolites (DCPMU, DCPU, and 3,4-DCA) were produced. Further determination of ring-cleavage pathways demonstrated that Acinetobacter baumannii DU and Pseudomonas fluorescens DUK degraded diuron and 3,4-DCA via ortho-cleavage. In contrast, Bacillus subtilis DU transformed these compounds via meta-cleavage pathways. Moreover, diuron caused a significant shift in the bacterial community in soil without diuron history. The augmentation of mountain soil with the isolated bacteria resulted in nearly three times higher degradation rate of diuron than the degradation by indigenous microorganisms. This study provides important information on in situ diuron bioremediation from contaminated sites by bioaugmentation with a mixed bacterial culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Green PG, Young TM (2006) Loading of the herbicide diuron into the California water system. Environ Eng Sci 23:545–551. https://doi.org/10.1089/ees.2006.23.545

    Article  CAS  Google Scholar 

  2. Lapworth DJ, Gooddy DC (2006) Source and persistence of pesticides in a semi–confined chalk aquifer of southeast England. Environ Pollut 144:1031–1044. https://doi.org/10.1016/j.envpol.2005.12.055

    Article  CAS  PubMed  Google Scholar 

  3. Eriksson E, Baun A, Mikkelsen PS, Ledin A (2007) Risk assessment of xenobiotics in stormwater discharged to Harrestrup Å, Denmark. Desalination 215:187–197. https://doi.org/10.1016/j.desal.2006.12.008

    Article  CAS  Google Scholar 

  4. Thomas KV, McHugh M, Waldock M (2002) Antifouling paint booster biocides in UK coastal waters: input, occurrence and environmental fate. Sci Total Environ 293:117–127. https://doi.org/10.1016/s0048-9697(01)01153-6

    Article  CAS  PubMed  Google Scholar 

  5. Tucker DP (1978) Bromacil and diuron residue levels in Florida citrus soils. Pestic Monit J 12(2):47–50

    CAS  PubMed  Google Scholar 

  6. Giacomazzi S, Cochet N (2004) Environmental impact of diuron transformation: a review. Chemosphere 56(11):1021–1032. https://doi.org/10.1016/j.chemosphere.2004.04.061

    Article  CAS  PubMed  Google Scholar 

  7. Tadonleke RD, LeBerre B, Perreau F, Humbert JF (2009) Responses of lake bacterioplankton activities and composition to the herbicide diuron. Aquat Toxicol 94:103–113. https://doi.org/10.1016/j.aquatox.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  8. Pesce S, Bouchez A, Montuelle B (2011) Effects of organic herbicides on phototrophic microbial communities in freshwater ecosystems. Rev Environ Contam T 214:87–124. https://doi.org/10.1007/978-1-4614-0668-6_5

    Article  CAS  Google Scholar 

  9. el Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community–level physiological profiles. Appl Environ Microbiol 65(3):982–988. https://doi.org/10.1128/AEM.65.3.982-988.1999

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prado AG, Airoldi C (2001) The effect of the herbicide diuron on soil microbial activity. Pest Manage Sci 57(7):640–644. https://doi.org/10.1002/ps.321

    Article  CAS  Google Scholar 

  11. Moretto JAS, Altarugio LM, Andrade PA, Fachin AL, Andreote FD, Stehling EG (2017) Changes in bacterial community after application of three different herbicides. FEMS Microbiol Lett 6:364. https://doi.org/10.1093/femsle/fnx113

    Article  CAS  Google Scholar 

  12. Pesce S, Bardot C, Lehours A-C, Batisson I, Bohatier J, Fajon C (2008) Effects of diuron in microcosms on natural riverine bacterial community composition: new insight into phylogenetic approaches using PCR–TTGE analysis. Aquat Sci 70:410–41810. https://doi.org/10.1007/s00027-008-8073-6

    Article  CAS  Google Scholar 

  13. Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20(7):1381–1389. https://doi.org/10.1897/1551-5028(2001)020%3c1381:dpoaph%3e2.0.co;2

    Article  CAS  PubMed  Google Scholar 

  14. Dellamatrice PM, Monteiro RTR (2004) Isolation of diuron–degrading bacteria from treated soil. Braz Arch Biol Technol 47:999–1003. https://doi.org/10.1590/S1516-89132004000600020

    Article  Google Scholar 

  15. Field JA, Reed RL, Sawyer TE, Griffith SM, Wigington PJ Jr (2003) Diuron occurrence and distribution in soil and surface and ground water associated with grass seed production. J Environ Qual 32(1):171–179. https://doi.org/10.2134/jeq2003.171

    Article  CAS  PubMed  Google Scholar 

  16. Directive 2000/60/EC (2001) Decision No. 2455/2001/EC of the European Parliament and of the Council of 20 November 2001 Establishing the List of Priority Substances in the Field of Water Policy and Amending Directive 2000/60/EC; Off. J. Eur. Communities

  17. Sørensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two–member consortium. Appl Environ Microbiol 74(8):2332–2340 https://doi.org/10.1128/AEM.02687-07

  18. Ngigi A, Getenga Z, Boga H, Ndalut P (2011) Biodegradation of phenylurea herbicide diuron by microorganisms from long–term–treated sugarcane–cultivated soils in Kenya. Toxicol Environ Chem 93:1623–1635. https://doi.org/10.1080/02772248.2011.595718

    Article  CAS  Google Scholar 

  19. Egea T, Da Silva R, Boscolo M, Rigonato J, Monteiro D, Grunig D, Silva H, Wielen F, Helmus R, Parsons J, Gomes E (2017) Diuron degradation by bacteria from soil of sugarcane crops. Heliyon 3:e00471. https://doi.org/10.1016/j.heliyon.2017.e00471

    Article  PubMed  Google Scholar 

  20. Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S (2013) Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegradation 24(6):765–774. https://doi.org/10.1007/s10532-013-9624-7

    Article  CAS  PubMed  Google Scholar 

  21. Ellegaard-Jensen L, Knudsen BE, Johansen A, Albers CN, Aamand J, Rosendahl S (2014) Fungal–bacterial consortia increase diuron degradation in water–unsaturated systems. Sci Total Environ 466–467:699–705

    Article  Google Scholar 

  22. Ha DD, Nguyen TO (2020) Application of Methylopila sp. DKT for Bensulfuron–methyl degradation and peanut growth promotion. Curr Microbiol 77:1466–1475. https://doi.org/10.1016/j.scitotenv.2013.07.095

    Article  CAS  PubMed  Google Scholar 

  23. Duc HD (2017) Degradation of chlorotoluenes by Comamonas testosteroni KT5. Appl Biol Chem 60(4):457–465. https://doi.org/10.1007/s13765-017-0299-3

    Article  Google Scholar 

  24. Duc HD, Oanh NT (2019) Biodegradation of Acetochlor and 2–methyl–6–ethylaniline by Bacillus subtilis and Pseudomonas fluorescens. Microbiology 88:729–738. https://doi.org/10.1134/S0026261719060031

    Article  CAS  Google Scholar 

  25. Qu M, Li N, Li H, Yang T, Liu W, Yan Y, Feng X, Zhu D (2018) Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment. Chemosphere 209:439–448. https://doi.org/10.1016/j.chemosphere.2018.06.055

    Article  CAS  PubMed  Google Scholar 

  26. Cullington JE, Walker A (1999) Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium. Soil Biol Biochem 31:677–686. https://doi.org/10.1016/S0038-0717(98)00156-4

    Article  CAS  Google Scholar 

  27. Oanh NT, Duc HD (2021) Anaerobic degradation of propanil in soil and sediment using mixed bacterial culture. Curr Microbiol. https://doi.org/10.1007/s00284-021-02419-7

    Article  PubMed  Google Scholar 

  28. Villaverde J, Rubio-Bellido M, Merchán F, Morillo E (2017) Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. J Environ Manage 188:379–386. https://doi.org/10.1016/j.jenvman.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  29. Hanapiah M, Zulkifli SZ, Mustafa M, Mohamat-Yusuff F, Ismail A (2018) Isolation, characterization, and identification of potential diuron–degrading bacteria from surface sediments of Port Klang, Malaysia. Mar Pollut Bull 127:453–457. https://doi.org/10.1016/j.marpolbul.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  30. Yao X-F, Khan F, Pandey R, Pandey J, Mourant RG, Jain RK, Guo JH, Russell RJ, Oakeshott JG, Pandey G (2011) Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21. Microbiology 157:721–726. https://doi.org/10.1099/mic.0.045393-0

    Article  CAS  PubMed  Google Scholar 

  31. Roque MRA, Monteiro RTR, Ferracini VL, Melo IS (1998) Mineralization of 14C–diuron of Acinetobacter baumannii. In: Latin American Biodegradation and Biodeterioration Symposium, 3, Florianópolis. Proceedings Florianópolis: 5

  32. Kučić Grgić D, Ocelić Bulatović V, Cvetnić M, Dujmić Vučinić Ž, Vuković Domanovac M, Markić M, Bolanča T (2020) Biodegradation kinetics of diuron by Pseudomonas aeruginosa FN and optimization of biodegradation using response surface methodology. Water Environ J. https://doi.org/10.1111/wej.12505

    Article  Google Scholar 

  33. Turnbull G, Cullington J, Walker A, Morgan J (2001) Identification and characterisation of a diuron–degrading bacterium. Biol Fertil Soils 33:472–476. https://doi.org/10.1007/s003740100353

    Article  CAS  Google Scholar 

  34. Tixier C, Sancelme M, Aı̈t–Aı̈ssa S, Widehem Bonnemoy PF, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526. https://doi.org/10.1016/S0045-6535(01)00193-X

    Article  CAS  PubMed  Google Scholar 

  35. Bazot S, Lebeau T (2009) Effect of immobilization of a bacterial consortium on diuron dissipation and community dynamics. Bioresour Technol 100:4257–4261. https://doi.org/10.1016/j.biortech.2009.03.067

    Article  CAS  PubMed  Google Scholar 

  36. Devers-Lamrani M, Pesce S, Rouard N, Martin-Laurent F (2014) Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments. Chemosphere 117:208–215. https://doi.org/10.1016/j.chemosphere.2014.06.080

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Dong Thap University and our families. We are very thankful for the support. The authors are very thankful anonymous reviewers and editors whose suggestions helped improve and clarify this manuscript. The authors would also like to thank Vanessk Skean (Peerwith for the Language editing services) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

DDH conducted the experiment on bacteria isolation and biodegradation. DDH also performed calculations, wrote the manuscript, and provided critical feedback. ONT performed the experiment on the effects of diuron on bacterial community structure.

Corresponding author

Correspondence to Ha Danh Duc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study does not involve any human participants or animals in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, H.D., Thuy, N.T.D., Thanh, L.U. et al. Degradation of Diuron by a Bacterial Mixture and Shifts in the Bacterial Community During Bioremediation of Contaminated Soil. Curr Microbiol 79, 11 (2022). https://doi.org/10.1007/s00284-021-02685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-021-02685-5

Navigation