Skip to main content
Log in

Biodegradation of 3-chloroaniline by suspended cells and biofilm of Acinetobacter baumannii GFJ1

  • Article
  • Published:
Applied Biological Chemistry Submit manuscript

Abstract

Acinetobacter baumannii strain GFJ1 was isolated from soil using 3-chloroaniline (3CA) as sole of carbon, nitrogen, and energy source under both aerobic and anaerobic conditions. The investigation of aerobic utilization profile showed that the utilization kinetics of 3CA followed the Edward model with a maximum specific degradation as 3.45 ± 0.33 µM.h−1.mg cell protein−1, and apparent half-saturation coefficient value was 0.062 ± 0.01 mM. The aerobic utilization toward 3CA was stimulated with the addition of sodium nitrate and citrate. Under anaerobic conditions, A. baumannii GFJ1 was able to utilize 3CA linked with nitrate reduction. The investigation of biofilm formation showed that biofilm formation was affected by cosubstrates and 3CA concentrations. Biofilm formation enhanced with the presence of cosubstrates, especially nitrogen sources. The biofilm formation and chemical degradation by biofilm increased in the following intervals of incubation with the supply of fresh medium. The results indicate that A. baumannii GFJ1 has a potential for the application to clean up 3CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson S (2009) Characterization of bacterial biofilms for wastewater treatment. School of Biotechnology, Royal Institute of Technology (KTH), Stockholm

    Google Scholar 

  • APHA (1992) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, Washington

    Google Scholar 

  • Bathe S, Schwarzenbeck N, Hausner M (2009) Bioaugmentation of activated sludge towards 3-chloroaniline removal with a mixed bacterial population carrying a degradative plasmid. Bioresour Technol 100:2902–2909

    Article  CAS  Google Scholar 

  • Bollag JM, Russel S (1976) Aerobic versus anaerobic metabolism of halogenated anilines by a Paracoccus sp. Microb Ecol 3:65–73

    Article  CAS  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913

    Article  CAS  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2001) Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 67:1107–1115

    Article  CAS  Google Scholar 

  • Boswell CD, Dick RE, Macaskie LE (1999) The effect of heavy metals and other environmental conditions on the anaerobic phosphate metabolism of Acinetobacter johnsonii. Microbiology 145:1711–1720

    Article  CAS  Google Scholar 

  • Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Hofte M, De Vos P, Verstraete W, Top EM (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541

    Article  CAS  Google Scholar 

  • Delaquis PJ, Caldwell DE, Lawrence JR, McCurdy AR (1989) Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress. Microb Ecol 18:199–210

    Article  CAS  Google Scholar 

  • Ding C, Li ZX, Yan JL (2011) Isolation, identification and degradation characterization of a p-chloroaniline degrading strain. Bull Environ Contam Toxicol 86:454–459

    Article  CAS  Google Scholar 

  • Ding Y, Peng N, Du Y, Ji L, Cao B (2014) Disruption of putrescine biosynthesis in Shewanella oneidensis enhances biofilm cohesiveness and performance in Cr(VI) immobilization. Appl Environ Microbiol 80:1498–1506

    Article  CAS  Google Scholar 

  • Dinkla IJT, Janssen DB (2003) Simultaneous growth on citrate reduces the effects of iron limitation during toluene degradation in Pseudomonas. Microb Ecol 45:97–107

    Article  CAS  Google Scholar 

  • Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:170–171

    Article  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  Google Scholar 

  • Edwards VH (1970) The influence of high substrate concentrations on microbial kinetics. Biotechnol Bioeng 12:679–712

    Article  CAS  Google Scholar 

  • European Chemicals Bureau (2006) 3,4-Dichloroanilines, summary risk assessment report. Institute for Health and Consumer Protection, Ispra

  • Ferschl A, Loidl M, Ditzelmüller G, Hinteregger C, Streichsbier F (1991) Continuous degradation of 3-chloroaniline by calcium-alginate-entrapped cells of Pseudomonas acidovorans CA28: influence of additional substrates. Appl Microbiol Biotechnol 35:544–550

    Article  CAS  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    Article  CAS  Google Scholar 

  • Hinteregger C, Loidl M, Streichsbier F (1992) Characterization of isofunctional ring-leaving enzymes in aniline and 3-chloroaniline degradation by Pseudomonas acidovorans CA28. FEMS Microbiol Lett 87:261–266

    Article  Google Scholar 

  • Hongsawat P, Vangnai AS (2011) Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J Hazard Mater 186:1300–1307

    Article  CAS  Google Scholar 

  • ISO 6777 (1984) Water quality – determination of nitrite – molecular absorption spectrometric method. ISO Standard Compendium, Environment, Water Quality, Chemical Methods, 1st edition, ISO 2:137–141

  • Kim YM, Ahn CK, Woo SH, Jung GY, Park JM (2009) Synergic degradation of phenanthrene by consortia of newly isolated bacterial strains. J Biotechnol 144:293–298

    Article  CAS  Google Scholar 

  • Kuhn EP, Suflita JM (1989) Sequential reductive dehalogenation of chloroanilines by microorganisms from a methanogenic aquifer. Environ Sci Technol 23:848–852

    Article  CAS  Google Scholar 

  • Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    Article  CAS  Google Scholar 

  • Latorre J, Reineke W, Knackmuss HJ (1984) Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch Microbiol 140:159–165

    Article  CAS  Google Scholar 

  • Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  • Livingston AG, Willacy A (1991) Degradation of 3,4-dichloroaniline in synthetic and industrially produced wastewaters by mixed cultures freely suspended and immobilized in a packed-bed reactor. Appl Microbiol Biotechnol 35:551–557

    CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Nisha KN, Devi V, Varalakshmi P, Ashokkumar B (2015) Biodegradation and utilization of dimethylformamide by biofilm forming Paracoccus sp. strains MKU1 and MKU2. Bioresour Technol 188:9–13

    Article  CAS  Google Scholar 

  • O’toole GA, Kolter R (1998) Initiation of biofilm formation in Peudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genitic analysis. Mol Microbiol 28:449–461

    Article  Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795

    Article  CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  Google Scholar 

  • Pramila R, Padmavathy K, Ramesh KV, Mahalakshm K (2012) Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis-Potential candidates for biodegradation of low density polyethylene (LDPE). J Bacteriol Res 4:9–14

    Article  CAS  Google Scholar 

  • Rochex A, Lebeault JM (2007) Effects of nutrients on biofilm formation and detachment of a Pseudomonas putida strain isolated from a paper machine. Water Res 41:2885–2892

    Article  CAS  Google Scholar 

  • Schmidt SK, Simkins S, Alexander M (1985) Models for the kinetics of biodegradation of organic compounds not supporting growth. Appl Environ Microbiol 50:323–331

    CAS  Google Scholar 

  • Shah MP (2014) Microbial degradation of 3-chloroanilne by two bacterial strains isolated from common effluent treatment plant. J Appl Environ Microbiol 2:155–165

    Google Scholar 

  • Struijs J, Rogers JE (1989) Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl Environ Microbiol 55:2527–2531

    CAS  Google Scholar 

  • Susarla S, Yonezawa Y, Masunaga S (1997) Reductive dehalogenation of chloroanilines in anaerobic estuarine sediment. Environ Technol 18:75–83

    Article  CAS  Google Scholar 

  • Vangnai AS, Petchkroh W (2007) Biodegradation of 4-chloroaniline by bacteria enriched from soil. FEMS Microbiol Lett 268:209–216

    Article  CAS  Google Scholar 

  • Wang X, Teng Y, Luo Y, Dick RP (2016) Biodegradation of 3,3′,4,4′-tetrachlorobiphenyl by Sinorhizobium meliloti NM. Bioresour Technol 201:261–268

    Article  CAS  Google Scholar 

  • Wegman RCC, Corte DALD (1981) Aromatic amines in surface waters of the Netherlands. Water Res 15:391–394

    Article  CAS  Google Scholar 

  • Wu Y, Ding Y, Cohen Y, Cao B (2014) Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline. Appl Microbiol Biotechnol 99:1967–1976

    Article  Google Scholar 

  • Yao XF, Khan F, Pandey R, Pandey J, Mourant RG, Guo RKJJH, Russell RJ, Oakeshott JG, Pandey G (2011) Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21. Microbiology 157:721–726

    Article  CAS  Google Scholar 

  • Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50:447–453

    CAS  Google Scholar 

  • Zhang LL, He D, Chen JM, Liu Y (2010) Biodegradation of 2-chloroaniline, 3-chloroaniline, and 4-chloroaniline by a novel strain Delftia tsuruhatensis H1. J Hazard Mater 179:875–882

    Article  CAS  Google Scholar 

  • Zhu L, Yu Y, Xu X, Tian Z, Luo W (2011) High-rate biodegradation and metabolic pathways of 4-chloroaniline by aerobic granules. Process Biochem 46:894–899

    Article  CAS  Google Scholar 

  • Zhu L, Lv M, Dai X, Xu X, Qi H, Yu Y (2012) Reaction kinetics of the degradation of chloroanilines and aniline by aerobic granule. Biochem Eng J 68:215–220

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand and the Vietnamese Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha Danh Duc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duc, H.D. Biodegradation of 3-chloroaniline by suspended cells and biofilm of Acinetobacter baumannii GFJ1. Appl Biol Chem 59, 703–709 (2016). https://doi.org/10.1007/s13765-016-0216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-016-0216-1

Keywords

Navigation