Skip to main content
Log in

The Molecular-Kinetic Approach to Hydrolysis of Boron Hydrides for Hydrogen Production

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

In this study, Langmuir–Hinshelwood and Michaelis–Menten kinetic models are applied to describe the kinetic behaviour of the Co–B catalyst in the hydrolysis of 0.12 M aqueous solutions of boron hydrides at temperatures from 22 to 60°C. Boron hydrides are selected as sodium borohydride (NaBH4, 10 wt % NaOH) and ammonia borane (NH3BH3). Based on the Langmuir–Hinshelwood kinetic approach, it is found that under the same reaction conditions the NaBH4–Co–B catalyst interaction is more effective than that of the NH3BH3–Co–B. According to the Langmuir–Hinshelwood model, apparent activation energies (Ea) for the hydrolysis of NaBH4 and NH3BH3 over Co–B catalysts are calculated to be 45.38 and 57.37 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Schlesinger, H.I., Brown, H.C., Finholt, A.E., Gilbreath, J.R., Hoekstra, H.R., and Hyde, E.K., J. Amer. Chem. Soc., 1953, vol. 75, no. 1, p. 215.

    Article  CAS  Google Scholar 

  2. Retnamma, R., Novais, A.Q., and Rangel, C.M., Int. J. Hydrogen Energy, 2011, vol. 36, no. 16, p. 9772.

    Article  CAS  Google Scholar 

  3. Fernandes, R., Patel, N., Miotello, A., Jaiswal, R., and Kothari, D.C., Int. J. Hydrogen Energy, 2012, vol. 37, no. 3, p. 2397.

    Article  CAS  Google Scholar 

  4. Abo-Hamed, E.K., Pennycook, T., Vaynzof, Y., Toprakcioglu, C., Koutsioubas, A., and Scherman, O.A., Small, 2014, vol. 10, no. 15, p. 3145.

    Article  CAS  PubMed  Google Scholar 

  5. Sun, D., Mazumder, V., Metin, O., and Sun, S., ACS Nano, 2011, vol. 5, no. 8, p. 6458.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Q. and Chandra, M., J. Power Sources, 2006, vol. 163, no. 1, p. 364.

    Article  CAS  Google Scholar 

  7. Metin, O., Mazumder, V., Ozkar, S., and Sun, S., J. Amer. Chem. Soc., 2010, vol. 132, no. 5, p. 1468.

    Article  CAS  Google Scholar 

  8. Yamada, Y., Yano, K., Xu, Q., and Fukuzumi, S., J. Phys. Chem. C, 2010, vol. 114, no. 39, p. 16456.

    Article  CAS  Google Scholar 

  9. Wu, C., Wu, F., Bai, Y., Yi, B., and Zhang, H., Mater. Lett., 2005, vol. 59, no. 14, p. 1748.

    Article  CAS  Google Scholar 

  10. Ozerova, A.M., Simagina, V.I., Komova, O.V., Netskina, O.V., Odegova, G.V., Bulavchenko, O.A., and Rudina, N.A., J. Alloy Compd., 2012, vol. 513, p. 266.

    Article  CAS  Google Scholar 

  11. Cho, K.W. and Kwon, H.S., Catal. Today, 2007, vol. 120, no. 3, p. 298.

    Article  CAS  Google Scholar 

  12. Sahiner, N., Ozay, O., Inger, E., and Aktas, N., Appl. Catal., B, 2011, vol. 102, no. 1, p. 201.

    Article  CAS  Google Scholar 

  13. Qiu, F.Y., Wang, Y.J., Wang, Y.P., Li, L., Liu, G., Yan, C., and Yuan, H.T., Catal. Today, 2011, vol. 170, no. 1, p. 64.

    Article  CAS  Google Scholar 

  14. Groven, L.J., Pfeil, T.L., and Pourpoint, T.L., Int. J. Hydrogen Energy, 2013, vol. 38, no. 15, p. 6377.

    Article  CAS  Google Scholar 

  15. Simagina, V.I., Komova, O.V., Ozerova, A.M., Netskina, O.V., Odegova, G.V., Kellerman, D.G., and Ishchenko, A.V., Appl. Catal., A, 2011, vol. 394, no. 1, p. 86.

  16. Kaya, M., Zahmakiran, M., Özkar, S., and Volkan, M., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 8, p. 3866.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, B.H. and Li, Z.P., J. Power Sources, 2009, vol. 187, no. 2, p. 527.

    Article  CAS  Google Scholar 

  18. Zhang, J.S., Delgass, W.N., Fisher, T.S., and Gore, J.P., J. Power Sources, 2007, vol. 164, no. 2, p. 772.

    Article  CAS  Google Scholar 

  19. Hung, A.J., Tsai, S.F., Hsu, Y.Y., Ku, J.R., Chen, Y.H., and Yu, C.C., Int. J. Hydrogen Energy, 2008, vol. 33, no. 21, p. 6205.

    Article  CAS  Google Scholar 

  20. Demirci, U.B. and Miele, P., C. R. Chim., 2014, vol. 17, no. 7, p. 707.

    Article  CAS  Google Scholar 

  21. Metin, Ö., Dinç, M., Eren, Z.S., and Özkar, S., Int. J. Hydrogen Energy, 2011, vol. 36, no. 18, p. 11528.

    Article  CAS  Google Scholar 

  22. Luo, Y.C., Liu, Y.H., Hung, Y., Liu, X.Y., and Mou, C.Y., Int. J. Hydrogen Energy, 2013, vol. 38, no. 18, p. 7280.

    Article  CAS  Google Scholar 

  23. Ye, W., Zhang, H., Xu, D., Ma, L., and Yi, B., J. Power Sources, 2007, vol. 164, no. 2, p. 544.

    Article  CAS  Google Scholar 

  24. Xu, Q. and Chandra, M., J. Alloy Compd., 2007, vol. 446, p. 729.

    Article  CAS  Google Scholar 

  25. Coşkuner, B., Figen, A.K., and Pişkin, S., React. Kinet. Mech. Catal., 2013, vol. 109, no. 2, p. 375.

    Article  CAS  Google Scholar 

  26. Andrieux, J., Demirci, U.B., and Miele, P., Catal. Today, 2011, vol. 170, p. 13.

    Article  CAS  Google Scholar 

  27. Levenspiel, O., Chemical Reaction Engineering, John Wiley & Sons, 1999.

    Google Scholar 

  28. Figen, A.K. and Coşkuner, B., Int. J. Hydrogen Energy, 2013, vol. 38, no. 6, p. 2824.

    Article  CAS  Google Scholar 

  29. Kantürk Figen, A., Coşkuner, B., Pişkin, M.B., Dere Özdemir, Ö. J Int Sci Publications: Mater, Methods & Techologies, 2013, vol. 7, no. 1, p. 43.

  30. Zhang, Q., Wu, Y., Sun, X., and Ortega, J., Ind. Eng. Chem. Res., 2007, vol. 46, no. 4, p. 1120.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the Yildiz Technical University Research Foundation (Project no. 2012-07-01-GEP01) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Coşkuner Filiz.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

B. Coşkuner Filiz, A. Kantürk Figen The Molecular-Kinetic Approach to Hydrolysis of Boron Hydrides for Hydrogen Production. Kinet Catal 60, 37–43 (2019). https://doi.org/10.1134/S0023158419010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419010075

Keywords:

Navigation