Skip to main content
Log in

Quantum Chemical Analysis of the Electronic Spectra of Molecular, Ionic, and Zwitterionic forms of 1-Amino- and 1-(N-Phenyl)Aminonaphthalene-8- Sulfonic Acids

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Geometric and electronic structures of molecular (AH), cationic \((\text{AH}_{2}^{+})\), zwitterionic (AH+), and anionic (A) forms of substituted naphthalenesulfonic (1-aminonaphthalene-8-sulfonic and 1-(N-phenyl)aminonaphthalene-8-sulfonic) acids are considered by the B3LYP DFT method. The theoretical electronic absorption and emission spectra of various forms of the studied sulfonic acids are recorded and analyzed. It is shown on the example of the molecular form of 1-aminonaphthalene-8-sulfonic acid that the absorption bands of conformer I are shifted to the short-wavelength region due to the presence of intramolecular hydrogen bonding, in contrast to the conformers containing no such bonds. The relationship between the energy and shape of frontier orbitals of various forms of sulfonic acids and the features of their electronic absorption spectra is analyzed. It is shown that the theoretical emission spectra of the cationic and zwitterionic forms of 1-(N-phenyl)aminonaphthalene-8-sulfonic acid reproduce well the tendency of the experimental spectra where the band with the maximum wavelength shifts to the long-wavelength region upon the transition from an acidic medium to weakly acidic and neutral ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. G. Rijun, J. Hui, B. Xiangning, F. Yongxin, W. Zonghua, and L. Qingyun. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev., 2019, 383, 82-103. https://doi.org/10.1016/j.ccr.2019.01.004

    Article  CAS  Google Scholar 

  2. Y. Sueishi, T. Fujita, S. Nakatani, N. Inazumi, and Y. Osawa. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit uril. Spectrochim. Acta, Part A, 2013, 114, 344-349. https://doi.org/10.1016/j.saa.2013.05.052

    Article  CAS  PubMed  Google Scholar 

  3. S. Himri, I. Lafifi, A. Guendouzi, M. Cheriet, L. Nouar, and F. Madi. Density functional theories study of the interactions between host β-Cyclodextrin and guest 8-Anilinonaphthalene-1-sulfonate: molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. J. Mol. Liq., 2019, 280, 218-229. https://doi.org/10.1016/j.molliq.2019.01.019

    Article  CAS  Google Scholar 

  4. K. Chaichana, N. Phutlaprungrueang, L. Chaicharoenwimolkul, M. Promkatkaew, and S. Kongsriprapan. A selective fluorescence probe based on naphthalene for the detection of barium(II). Spectrochim. Acta, Part A, 2019, 207, 118-122. https://doi.org/10.1016/j.saa.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  5. T. B. Sinha, D. Singharoy, H. S. Das, S. Gupta, and P. K. Khatua. Photophysical studies of the dye 1-Anilinonapthalene-8-sulfonic acid in different solvents and its quantum chemical investigation. J. Mol. Struct., 2019, 1179, 462-468. https://doi.org/10.1016/j.molstruc.2018.11.012

    Article  CAS  Google Scholar 

  6. J. Wang, C. Cai, S. Xu, F. Zhao, H. Xia, and Y. Wang. Modulation of photophysical properties of copper(I) complexes containing pyridyl-imidazole (PyIm) ligands functionalized by naphthyl, phenanthryl, and anthryl groups. Inorg. Chim. Acta, 2019, 484, 237-244. https://doi.org/10.1016/j.ica.2018.09.059

    Article  CAS  Google Scholar 

  7. L. M. Lima, V. A. Silva, L. C. Palmieri, M. C. Oliveira, D. Foguel, and I. Polikarpov. Conformational differences between the wild type and V30M mutant transthyretin modulate its binding to genistein: Implications to tetramer stability and ligand-binding. J. Struct. Biol., 2010, 170(3), 522-531. https://doi.org/10.1016/j.jsb.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Y. Feng, M. Li, B. Wang, and Y. G. Zheng. Discovery and mechanistic study of a class of protein arginine methylation inhibitors. J. Med. Chem., 2010, 53(16), 6028-6039. https://doi.org/10.1021/jm100416n

    Article  CAS  PubMed  Google Scholar 

  9. A. Qadeer, G. Rabbani, N. Zaidi, E. Ahmad, J. M. Khan, and R. H. Khan. PLoS One, 2012, 7(11), e50633. https://doi.org/10.1371/journal.pone.0050633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O. K. Gasymov and B. J. Glasgow. ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochim. Biophys. Acta, Proteins Proteomics, 2007, 1774(3), 403-411. https://doi.org/10.1016/j.bbapap.2007.01.002

    Article  CAS  PubMed  Google Scholar 

  11. A. B. Samira, P. Jeannine, and L. H. Holmes. Effect of solvents on the fluorescence emission spectra of 1-anilino-8-naphthalene sulfonic acid: a physical chemistry experiment. Chem. Educ., 1998, 3(5), 1-10. https://doi.org/10.1007/s00897980254a

    Article  Google Scholar 

  12. A. Atahan and S. Durmus. 1-Amino-2-hydroxy-4-naphthalenesulfonic acid based Schiff bases or naphtho[1,2-d]oxazoles: selective synthesis and photophysical properties. Spectrochim. Acta, Part A, 2015, 144, 61-67. https://doi.org.10.1016/j.saa.2015.01.085

    Article  CAS  PubMed  Google Scholar 

  13. C.-Y. Lee, J.-T. Chen, W.-T. Chang, and I.-M. Shiah. Effect of pH on the solubilities of divalent and trivalent amino acids in water at 298.15 K. Fluid Phase Equilib., 2013, 343, 30-35. https://doi.org/10.1016/j.fluid.2013.01.010

    Article  CAS  Google Scholar 

  14. M. S. Fedorov, N. I. Giricheva, E. A. Lapykina, and O. A. Suvorova. Relationships between geometrical and electronic structures and optical properties of 1,8-naphthosultam substituents and derivatives: TDDFT study. Opt. Spectrosc., 2017, 123(2), 231-237. https://doi.org/10.1134/S0030400X17080045

    Article  CAS  Google Scholar 

  15. S. L. , C. , M. A. , and M. U. Determination of crystal structures and tautomeric states of 2-ammoniobenzenesulfonates by laboratory X-ray powder diffraction. Z. Kristallogr. - Cryst. Mater., 2015, 230, 611-620. https://doi.org/10.1515/zkri-2015-1845

    Article  CAS  Google Scholar 

  16. A. V. Kulinich, E. K. Mikitenko, and A. A. Ishchenko. Fluorescent properties of merocyanines based on 1,3-indandione. Opt. Spectrosc., 2015, 119(1), 39-48. https://doi.org/10.1134/S0030400X15070164

    Article  CAS  Google Scholar 

  17. H. Gökce and S. Bahçeli. Molecular structure, spectroscopic properties (FTIR, micro-Raman, and UV-vis), and DFT calculations of minaprine. Opt. Spectrosc., 2014, 117(1), 82-95. https://doi.org/10.1134/S0030400X14040110

    Article  Google Scholar 

  18. N. E. Aksakal, M. Bayar, H. Dumrul, D. Atilla, Yu. Chumakov, and F. Yuksel. Structural and optical properties of new naphthalene and perylene imide imidazoles. Polycyclic Aromat. Compd., 2017, 39(4), 363-373. https://doi.org/10.1080/10406638.2017.1327871

    Article  CAS  Google Scholar 

  19. S. M. Basheer, N. S. P. Bhuvanesh, and A. Sreekanth. Experimental and theoretical studies of novel hydroxynaphthalene based chemosensor, and construction of molecular logic gates. J. Fluorine Chem., 2016, 191, 129-142. https://doi.org/10.1016/j.jfluchem.2016.10.005

    Article  CAS  Google Scholar 

  20. P. Pratihar, S. Jha, T. K. Mondal, G. Mostafa, and C. Sinha. Palladium(II) complexes of N-[(2-pyridyl)methyliden]-α(or β)-aminonaphthalene: Single crystal X-ray structure of di-chloro-N-[{(2-pyridyl)methyliden}-β-aminonaphthalene]palladium(II), Pd(β-NaiPy)Cl2, spectra and DFT, TD-DFT study. Polyhedron, 2007, 26(15), 4328-4344. https://doi.org/10.1016/j.poly.2007.05.049

    Article  CAS  Google Scholar 

  21. S. B. Novir. DFT and TDDFT study of some bifunctional hemithioindigo chromophores. Chem. Phys. Lett., 2017, 690, 86-100. https://doi.org/10.1016/j.cplett.2017.10.043

    Article  CAS  Google Scholar 

  22. K. Tülay, S. Cenk, and A. Nursel. A DFT and TDDFT investigation of interactions between 1-hydroxypyrene and aromatic amino acids. Comput. Theor. Chem., 2015, 1073, 9-19. https://doi.org/10.1016/j.comptc.2015.09.009

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision A.01. Wallingford, CT, USA: Gaussian Inc., 2009.

  24. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO Version 3.1. Madison, WI, USA: Theoretical Chemistry Institute, University of Wisconsin, 1990.

  25. F. Weinhold and J. E. Carpenter. The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions. In: The Structure of Small Molecules and Ions / Ed. R. Naaman and Z. Vager. Boston, USA: Springer, 1988. 227-236. https://doi.org/10.1007/978-1-4684-7424-4_24

    Chapter  Google Scholar 

  26. G. A. Zhurko and D. A. Zhurko. Chemcraft Program, http://www.chemcraftprog.com.

  27. C. Ota, S.-I. Tanaka, and K. Takano. Revisiting the rate-limiting step of the ANS-protein binding at the protein surface and inside the hydrophobic cavity. Molecules, 2021, 26(2), 420. https://doi.org/10.3390/molecules26020420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation (project No. 22-73-00091, https://rscf.ru/project/22-73-00091/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 8, 114392.https://doi.org/10.26902/JSC_id114392

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, M.S., Lapykina, E.A., Giricheva, N.I. et al. Quantum Chemical Analysis of the Electronic Spectra of Molecular, Ionic, and Zwitterionic forms of 1-Amino- and 1-(N-Phenyl)Aminonaphthalene-8- Sulfonic Acids. J Struct Chem 64, 1412–1422 (2023). https://doi.org/10.1134/S0022476623080061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623080061

Keywords

Navigation