Skip to main content
Log in

Spectroscopic (Ft-Ir, Nmr, Uv-Vis, Fluorescence) and Dft Studies (Molecular Structure, Ir and Nmr Spectral Assignments, Nbo and Fukui Function) of Schiff Bases Derived from 2-Chloro-3-Quinolinecarboxaldehyde

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two Schiff bases are newly prepared by the condensation of 2-chloro-3-quinolinecarboxaldehyde with ethylenediamine and 1,4-butanediamine. The Schiff bases are characterized by the elemental analysis, IR, 1H and 13CNMR, UV-Vis, and fluorescence spectroscopies. Structural parameters together with the theoretical assignment of their vibrational frequencies and NMR chemical shifts are determined using density functional theory (DFT) approaches. There is good consistency between the DFT-calculated results and the experimental data, confirming the validity of the optimized geometries for the investigated Schiff bases. Optimized geometries of two Schiff bases are not planar, however, the substitutions are essentially in the same plane with the pyridine rings. Shapes of the frontier orbitals are determined using the natural bond orbital (NBO) analysis. Due to a high energy gap between the frontier orbitals, both Schiff bases are stable. Based on the Fukui function analysis, two Cl atoms and two azomethine nitrogen atoms are four suitable donor atoms for coordination to metal ions. Effects of the temperature and pH on the UV-Vis absorbance and fluorescence intensity of the Schiff bases are studied in a DMSO solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Böttcher, T. Takeuchi, K. I. Hardcastle, T. J. Meade, H. B. Gray, D. Cwikel, M. Kapon, and Z. Dori. Inorg. Chem., 1997, 36, 2498.

    Article  Google Scholar 

  2. E. M. Hodnett and P. D. Mooney. J. Med. Chem., 1970, 13, 786.

    Article  CAS  PubMed  Google Scholar 

  3. E. Lamour, S. Routier, J.–L. Bernier, J.–P. Catteau, C. Bailly, and H. Vezin. J. Am. Chem. Soc., 1999, 121, 1862.

    Article  CAS  Google Scholar 

  4. S. Sadeghi, A. Gafarzadeh, and H. Naeimi. J. Anal. Chem., 2006, 61, 677.

    Article  CAS  Google Scholar 

  5. K. Gupta and A. Sutar. J. Mol. Catal. A: Chem., 2007, 272, 64.

    Article  CAS  Google Scholar 

  6. Y.–T. Liu, G.–D. Lian, D.–W. Yin, and B.–J. Su. Spectrochim. Acta, Part A, 2013, 100, 131.

    Article  CAS  Google Scholar 

  7. T. Yousef, G. A. El–Reash, O. El–Gammal, and R. Bedier. J. Mol. Struct., 2013, 1035, 307.

    Article  CAS  Google Scholar 

  8. K. Singh, Y. Kumar, P. Puri, M. Kumar, and C. Sharma. Eur. J. Med. Chem., 2012, 52, 313.

    Article  CAS  PubMed  Google Scholar 

  9. Z.–Y. Ma, X. Qiao, C.–Z. Xie, J. Shao, J.–Y. Xu, Z.–Y. Qiang, and J.–S. Lou. J. Inorg. Biochem., 2012, 117, 1.

    Article  CAS  PubMed  Google Scholar 

  10. C.–Y. Wang, X. Wu, S.–J. Tu, and B. Jiang. Synth. React. Inorg., Met., Org., Nano, Met. Chem., 2009, 39, 78.

    Article  CAS  Google Scholar 

  11. V. Mishra, S. Pandeya, and S. Ananthan. Acta Pharm. Turc., 2000, 42, 139.

    CAS  Google Scholar 

  12. V. M. Leovac, M. D. Joksović, V. Divjaković, L. S. Jovanović, Ž. Šaranović, and A. Pevec. J. Inorg. Biochem., 2007, 101, 1094.

    Article  CAS  PubMed  Google Scholar 

  13. S. C. Kumar, A. Pal, M. Mitra, V. M. Manikandamathavan, C.–H. Lin, B. U. Nair, and R. Ghosh. J. Chem. Sci. (Bangalore, India), 2015, 127, 1375.

    Article  CAS  Google Scholar 

  14. X. Zhu, C. Wang, Y. Dang, H. Zhou, Z. Wu, Z. Liu, D. Ye, and Q. Zhou. Synth. React. Inorg. Met., Org. Chem., 2000, 30, 625.

    Article  CAS  Google Scholar 

  15. J. Wen, J. Zhao, X. Wang, J. Dong, and T. You. J. Mol. Catal. A: Chem., 2006, 245, 242.

    Article  CAS  Google Scholar 

  16. H. Zhang, Y. Zhang, and C. Li. J. Catal., 2006, 238, 369.

    Article  CAS  Google Scholar 

  17. S. Beyramabadi, H. Eshtiagh–Hosseini, M. Housaindokht, S. Shirzadi, A. Morsali, and M. Naseri. J. Struct. Chem., 2013, 54, 1055.

    Article  CAS  Google Scholar 

  18. S. Beyramabadi, A. Morsali, and A. Shams. J. Struct. Chem., 2015, 56, 243.

    Article  CAS  Google Scholar 

  19. S. Beyramabadi, A. Morsali, S. Vahidi, M. Khoshkholgh, and A. Esmaeili. J. Struct. Chem., 2012, 53, 460.

    Article  CAS  Google Scholar 

  20. S. A. Beyramabadi, H. Eshtiagh–Hosseini, M. R. Housaindokht, and A. Morsali. Organometallics, 2008, 27, 72.

    Article  CAS  Google Scholar 

  21. S. A. Beyramabadi, A. Morsali, M. J. Khoshkholgh, and A. A. Esmaeili. Spectrochim. Acta, Part A, 2011, 83, 467.

    Article  CAS  Google Scholar 

  22. H. Eshtiagh–Hosseini, S. Beyramabadi, M. Mirzaei, A. Morsali, A. Salimi, and M. Naseri. J. Struct. Chem., 2013, 54, 1063.

    Article  CAS  Google Scholar 

  23. H. Eshtiagh–Hosseini, S. A. Beyramabadi, A. Morsali, M. Mirzaei, H. Chegini, M. Elahi, and M. A. Naseri. J. Mol. Struct., 2014, 1072, 187.

    Article  CAS  Google Scholar 

  24. H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. Beheshti, A. A. Esmaeili, M. J. Khoshkholgh, and A. Morsali. Spectrochim. Acta, Part A, 2008, 71, 1341.

    Article  CAS  Google Scholar 

  25. H. Eshtiagh–Hosseini, M. R. Housaindokht, S. A. Beyramabadi, S. H. M. Tabatabaei, A. A. Esmaeili, and M. J. Khoshkholgh. Spectrochim. Acta, Part A, 2011, 78, 1046.

    Article  CAS  Google Scholar 

  26. T. Toozandejani, S. A. Beyramabadi, H. Chegini, M. Khashi, A. Morsali, and M. Pordel. J. Mol. Struct., 2017, 1127, 15.

    Article  CAS  Google Scholar 

  27. A. Mansoorinasab, A. Morsali, M. Heravi, and S. Beyramabadi. J. Comput. Theor. Nanosci., 2015, 12, 4935.

    Article  CAS  Google Scholar 

  28. T. Sperger, I. A. Sanhueza, I. Kalvet, and F. Schoenebeck. Chem. Rev., 2015, 115, 9532.

    Article  CAS  PubMed  Google Scholar 

  29. E. N. Voloshina, D. Mollenhauer, L. Chiappisi, and B. Paulus. Chem. Phys. Lett., 2011, 510, 220.

    Article  CAS  Google Scholar 

  30. H. Wang. Res. Chem. Intermed., 2012, 38, 2175.

    Article  CAS  Google Scholar 

  31. S. Altürk, D. Avcı, Ö. Tamer, Y. Atalay, and O. Şahin. J. Phys. Chem. Solids, 2016, 98, 71.

    Article  CAS  Google Scholar 

  32. D. Avcı, Y. Atalay, M. Şekerci, and M. Dinçer. Spectrochim. Acta, Part A, 2009, 73, 212.

    Article  CAS  Google Scholar 

  33. S. Lavoie, C. Gauthier, V. Mshvildadze, J. Legault, B. Roger, and A. Pichette. J. Nat. Prod., 2015, 78, 2896.

    Article  CAS  PubMed  Google Scholar 

  34. T. Ramya, S. Gunasekaran, and G. R. Ramkumaar. Spectrochim. Acta, Part A, 2013, 114, 277.

    Article  CAS  Google Scholar 

  35. V. K. Rastogi and M. A. Palafox. Spectrochim. Acta, Part A, 2011, 79, 970.

    Article  CAS  Google Scholar 

  36. Z. Sadeghzade, S. A. Beyramabadi, and A. Morsali. Spectrochim. Acta, Part A, 2015, 138, 637.

    Article  CAS  Google Scholar 

  37. B. Shafaatian, S. S. Mousavi, and S. Afshari. J. Mol. Struct., 2016, 1123, 191.

    Article  CAS  Google Scholar 

  38. P. Tyagi, S. Chandra, and B. S. Saraswat. Spectrochim. Acta Part A: Mol. and Biomol. Spectrosc., 2015, 134, 200.

    Article  CAS  Google Scholar 

  39. P. Tyagi, S. Chandra, B. S. Saraswat, and D. Yadav. Spectrochim. Acta Part A: Mol. and Biomol. Spectrosc., 2015, 145, 155.

    Article  CAS  Google Scholar 

  40. P. Tyagi, M. Tyagi, S. Agrawal, S. Chandra, H. Ojha, and M. Pathak. Spectrochim. Acta, Part A, 2017, 171, 246.

    Article  CAS  Google Scholar 

  41. M. Frisch, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, J. Montgomery Jr, T. Vreven, K. Kudin, and J. Burant. Inc., Pittsburgh, PA, 2003.

    Google Scholar 

  42. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  43. R. Cammi and J. Tomasi. J. Comput. Chem., 1995, 16, 1449.

    Article  CAS  Google Scholar 

  44. D. C. Young. Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems. New York: Wiley Online Library, 2001.

    Book  Google Scholar 

  45. R. Ditchfield. Mol. Phys., 1974, 27, 789.

    Article  CAS  Google Scholar 

  46. G. Zhurko and D. Zhurko. URL: http://www.chemcraftprog.com, 2009.

    Google Scholar 

  47. T. Mukherjee, J. O. Costa Pessoa, A. Kumar, and A. R. Sarkar. {iInorg. Chem.}, 2011, 50, 4349.

    Article  CAS  Google Scholar 

  48. W. Yang and W. J. Mortier. {iJ. Am. Chem. Soc.}, 1986, 108, 5708.

    Article  CAS  Google Scholar 

  49. A. A. Khandar, B. Shaabani, F. Belaj, and A. Bakhtiari. {iPolyhedron}, 2006, 25, 1893.

    Article  CAS  Google Scholar 

  50. S. Naskar, S. Naskar, H. M. Figgie, W. S. Sheldrick, and S. K. Chattopadhyay. {iPolyhedron}, 2010, 29, 493.

    Article  CAS  Google Scholar 

  51. O. M. I. Adly. pectrochim. Acta, Part A, 2012, 95, 483.

    Article  CAS  Google Scholar 

  52. D. Ware, D. Mackie, P. Brothers, and W. Denny. {iPolyhedron}, 1995, 14, 1641.

    Article  CAS  Google Scholar 

  53. H. Ünver, E. Kendi, K. Güven, and T. N. Durlu. {iZeitschrift für Naturforschung B}, 2002, 57, 685.

    Article  Google Scholar 

  54. N. Giricheva, G. Girichev, N. Kuzmina, Y. S. Medvedeva, and A. Y. Rogachev. {iJ. Struct. Chem.}, 2009, 50, 52.

    Article  CAS  Google Scholar 

  55. N. Tverdova, N. Giricheva, G. Girichev, N. Kuz′mina, O. Kotova, and A. Zakharov. {iRuss. J. Phys. Chem. A}, 2009, 83, 2255.

    Article  CAS  Google Scholar 

  56. N. V. Tverdova, E. D. Pelevina, N. I. Giricheva, G. V. Girichev, N. P. Kuzmina, and O. V. Kotova. truct. Chem., 2011, 22, 441.

    Article  CAS  Google Scholar 

  57. N. J. Sanmartí, A. M. García–Deibe, M. Fondo, D. Navarro, and M. R. Bermejo. {iPolyhedron}, 2004, 23, 963.

    Article  CAS  Google Scholar 

  58. R. Mathammal, K. Sangeetha, M. Sangeetha, R. Mekala, and S. Gadheeja. {iJ. Mol. Struct.}, 2016, 1120, 1.

    Article  CAS  Google Scholar 

  59. N. Tezer and N. Karakus. {iJ. Mol. Model.}, 2009, 15, 223.

    Article  CAS  Google Scholar 

  60. N. Özdemir, M. Dinçer, A. Çukurovalı, and O. Büyükgüngör. {iJ. Mol. Model.}, 2009, 15, 1435.

    Article  CAS  Google Scholar 

  61. E. M. Kosower. {iJ. Am. Chem. Soc.}, 1958, 80, 3253.

    Article  CAS  Google Scholar 

  62. A. White. {iBiochem. J.}, 1959, 71, 217.

    Article  CAS  Google Scholar 

  63. J. R. Lakowicz. Principles of fluorescence spectroscopy. Berlin: Springer Science & Business Media, 2013.

    Google Scholar 

  64. D. A. Skoog and D. M. West. Principles of instrumental analysis. Saunders College Philadelphia, Chicago, 1980.

    Google Scholar 

  65. B. Valeur and M. N. Berberan–Santos. Molecular fluorescence: principles and applications. New York: John Wiley &Sons, 2012.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Beyramabadi.

Additional information

Original Russian Text © 2018 S. A. Beyramabadi, M. Javan-Khoshkholgh, N. J. Ostad, A. Gharib, M. Ramezanzadeh, M. Sadeghi, A. Bazian, A. Morsali.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 6, pp. 1392–1402, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beyramabadi, S.A., Javan-Khoshkholgh, M., Ostad, N.J. et al. Spectroscopic (Ft-Ir, Nmr, Uv-Vis, Fluorescence) and Dft Studies (Molecular Structure, Ir and Nmr Spectral Assignments, Nbo and Fukui Function) of Schiff Bases Derived from 2-Chloro-3-Quinolinecarboxaldehyde. J Struct Chem 59, 1342–1352 (2018). https://doi.org/10.1134/S0022476618060136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618060136

Keywords

Navigation