Skip to main content
Log in

The Dipole Moments and Solvatochromism of ((4-(Benzyloxy)benzylidene)amino)phenol Compounds as Solvatochromic Materials

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Three novel ((4-(benzyloxy)benzylidene)amino)phenol compounds are synthesized and characterized. The electronic structures of the molecules have been investigated by using both experimental and theoretical methods. Kamlet–Taft and Catalan models are used to determinate the contribution of each solute–solvent interaction type. Schiff bases can be used as solvatochromic materials. Experimental ground and excited state electric dipole moments have been determined by using the Bilot–Kawski, Lippert–Mataga, Bakshiev and Kawski–Chamma–Viallet theories. The excited state dipole moment of (E)-2-((4-(benzyloxy)benzylidene)amino)phenol is estimated to be 38.809 times higher than the ground state dipole moment. The electronic absorption spectra, frontier molecular orbitals (HOMO and LUMO), molecular electrostatic potential and solvent accessibility surface of these compounds have been calculated by using the DFT (B3LYP)/6-311++G (d,p) theory and method. In addition, theoretical electronic transitions have been calculated by the B3LYP/6-311++G (d,p) and CAM-B3LYP/6-311++G (d,p) levels of theory. The (E)-2-((4-(benzyloxy)benzylidene)amino)phenol molecule is found to have the greatest semiconductor character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Schiff, H.: Untersuchungen Über Salicinderivative. Anal. Chem. 150, 193–200 (1869)

    Google Scholar 

  2. Raczynska, E.D., Kosinska, W., Osmiałowski, B., Gawinecki, R.: Tautomeric equilibria in relation to pi-electron delocalization. Chem. Rev. 105, 3561–3612 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Yeap, G.-Y., Ha, S.-T., Ishizawa, N., Suda, K., Boey, P.-L., Mahmood, W.A.K.: Synthesis, crystal structure and spectroscopic study of para substituted 2-hydroxy-3 methoxybenzalideneanilines. J. Mol. Struct. 658, 87–99 (2003)

    Article  CAS  Google Scholar 

  4. Przybylski, P., Włodarz, M., Schroeder, G., Pankiewicz, R.B., Brzezinski Bartl, F.: ESI MS and PM5 semiempirical studies of gossypol Schiff base with (R)-tetrahydrofurfuryl-amine complexes and monovalent cations. J. Mol. Struct. 693, 95–102 (2004)

    Article  CAS  Google Scholar 

  5. Seeboth, A., Lötzsch, D.: Thermochromic and Thermotropic Materials. CRC Press, Baco Raton (2013)

    Book  Google Scholar 

  6. Kadkin, O.N., Han, H., Galyametdinov, Y.G.: Synthesis, computational modelling and liquid crystalline properties of some [3] ferrocenophane-containing Schiff’s bases and aminovinylketone: molecular geometry- phase behaviour relationship. J. Organomet. Chem. 692, 5571–5582 (2007)

    Article  CAS  Google Scholar 

  7. Costamagna, J., Lillo, L.E., Matsuhiro, B., Noseda, M.D., Villagran, M.: Ni(II) complexes with Schiff bases derived from amino sugars. Carbohydr. Res. 338(15), 1535–1542 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. Wesley Jeevadason, A., Kalidasa Murugavel, K., Neelakantan, M.A.: Review on Schiff bases and their metal complexes as organic photovoltaic materials. Renew. Sustain. Energy Rev. 36, 220–227 (2014)

    Article  CAS  Google Scholar 

  9. Iglesias, A.L., Aguirre, G., Somanathan, R., Parra-Hake, M.: HOMO–LUMO gap of ip3 that tends to increase. Acta Crystallogr. E62, 390–392 (2006)

    Google Scholar 

  10. Akitsu, T., Einaga, Y.: A chiral photochromic Schiff base: (R)-4-bromo-2-[(1-phenyl-ethyl)imino-meth-yl]phenol. Acta Crystallogr. E62, 4315–4317 (2006)

    Google Scholar 

  11. Ghasemian, M., Kakanejadifard, A., Azarbani, F., Zabardasti, A., Kakanejadifard, S.: The triazine-based azo–azomethine dyes; spectroscopy, solvatochromism and biological properties of 2,2′-((2,2′-(6-methoxy-1,3,5-triazine-2,4-diyl) bis(oxy)bis(2,1-phenylene))bis(azan-1-yl-1-ylidene)bis(methan-1-yl-1-ylidene))bis(4-phenyldiazenyl)phenol. J. Mol. Liq. 195, 35–39 (2014)

    Article  CAS  Google Scholar 

  12. García-López, M.C., Muñoz-Flores, B.M., Jiménez-Pérez, V.M., Moggio, I., Arias, E., Chan-Navarro, R., Santillan, R.: Synthesis and photophysical characterization of organotin compounds derived from Schiff bases for organic light emitting diodes. Dyes Pigm. 106, 188–196 (2014)

    Article  CAS  Google Scholar 

  13. Minkin, V.I., Tsukanov, A.V., Dubonosov, A.D., Bren, V.A.: Tautomeric Schiff bases: Iono-, solvato-, thermo- and photochromism. J. Mol. Struc. 998, 179–191 (2011)

    Article  CAS  Google Scholar 

  14. Hadjoudis, E., Mavridis, I.M.: Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem. Soc. Rev. 33, 579–588 (2004)

    CAS  PubMed  Google Scholar 

  15. Wanga, Q., Cai, L., Gao, F., Zhou, Q., Zhan, Q.F.: Wang, Photochromism of Schiff base compounds derived from N, N′-bis(2-aminophenyl)isophthalamide: structure and photosensitivity. J. Mol. Struct. 977, 274–278 (2010)

    Article  CAS  Google Scholar 

  16. Grabowska, A., Kownacki, K., Karpiuk, J., Dobrin, S., Kaczmarek, E.: Photochromism and proton transfer reaction cycle of new internally H-bonded Schiff bases. Chem. Phys. Lett. 267, l32–l140 (1997)

    Article  Google Scholar 

  17. Ivanova, B.B., Spiteller, M.: Optical and nonlinear optical properties of new Schiff’s bases: experimental versus theoretical study of inclusion interactions. J. Incl. Phenom. Macrocycl. Chem. 75, 211–221 (2013)

    Article  CAS  Google Scholar 

  18. Hadjoudis, E.: Tautomerism by hydrogen transfer in anils. In: Dürr, H., Bouas-Laurent, H. (eds.) Photochromism: Molecules and Systems. Elsevier, Amsterdam (1990)

    Google Scholar 

  19. Che, C.M., Kwok, C.C., Lai, S.W., Rausch, A.F., Finkenzeller, W.J., Zhu, N., Yersin, H.: Photophysical properties and OLED applications of phosphorescent platinum(II) Schiff base complexes. Chem. A Eur. J. 16(1), 233–247 (2010)

    Article  CAS  Google Scholar 

  20. Guarìn, S.A.P., Bourgeaux, M., Dufresne, S., Skene, W.G.: Photophysical, crystallographic, and electrochemical characterization of symmetric and unsymmetric self-assembled conjugated thiopheno azomethines. J. Org. Chem. 72(7), 2631–2643 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Bolduc, A., Al Ouahabi, A., Mallet, C., Skene, W.G.: Insight into the isoelectronic character of azomethines and vinylenes using representative models: a spectroscopic and electrochemical study. J. Org. Chem. 78(18), 9258–9269 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Barik, S., Bletzacker, T., Skene, W.G.: π-Conjugated fluorescent azomethine copolymers: opto-electronic, halochromic, and doping properties. Macromolecules 45(13), 1165–1173 (2012)

    Article  CAS  Google Scholar 

  23. Petrus, M.L., Bouwer, R.K.M., Lafont, U., Athanasopoulos, S., Greenham, N.C., Dingemans, T.J.: Small-molecule azomethines: organic photovoltaics via Schiff base condensation chemistry. J. Mat. Chem. A 2(25), 9474–9477 (2014)

    Article  CAS  Google Scholar 

  24. Marini, A., Muňoz-Losa, A., Biancardi, A., Mennucci, B.: What is solvatochromism? J. Phys. Chem. B 114(51), 17128–17135 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. Sun, S.-S., Dalton, L.R.: Introduction to Organic Electronic and Optoelectronic Materials and Devices. CRC Press, Baco Raton (2017)

    Google Scholar 

  26. Reichardt, C.: Solvents and Solvent Effects in Organic Chemistry. VCH, New York (2008)

    Google Scholar 

  27. Gülseven Sıdır, Y., Sıdır, İ.: Solvatochromic fluorescence of 4-alkoxybenzoic acid liquid crystals: ground and excited state dipole moments of monomer and dimer structures determined by solvatochromic shift methods. J. Mol. Liq. 211, 591–603 (2015)

    Article  CAS  Google Scholar 

  28. Gülseven Sıdır, Y., Sıdır, İ., Berber, H.: Yeni mono Schiff bazı içeren bileşiklerin endüstriyel ve biyolojik ortamlarda kullanılabilirliğinin incelenmesi, BEBAP-2014.05, Bitlis, Türkiye, 2017

  29. Reichardt, C.: Solvents and Solvent Effects in Organic Chemistry, 3rd edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2003)

    Google Scholar 

  30. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics, 96th edn. CRC Press, Boca Raton (2015)

    Google Scholar 

  31. Kamlet, M.J., Abboud, J.L., Abraham, M.H.: Taft, R.W. A comprehensive collection of the solvatochromic parameters, pi*, alpha, and beta and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983)

    Article  CAS  Google Scholar 

  32. Kamlet, M.J., Abboud, J.L.: Taft RW: The pi* scale of solvent polarities. J. Am. Chem. Soc. 99(18), 6027–6038 (1997)

    Article  Google Scholar 

  33. Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)

    Article  CAS  Google Scholar 

  34. Catalán, J.: Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 113(17), 5951–5960 (2009)

    Article  CAS  PubMed  Google Scholar 

  35. Lide, D.R. (ed.): Handbook of Chemistry and Physics, 85th edn. CRC Press, New York (2014)

    Google Scholar 

  36. Kawski, A.: Der Wellenzahl von Elecktronenbanden Lumineszierenden Moleküle. Acta Phys. Pol. 29, 507–518 (1966)

    CAS  Google Scholar 

  37. Kawski, A.: Progress in Photochemistry and Photophysics, pp. 1–47. CRC Press, Boca Raton (1992)

    Google Scholar 

  38. Kawski, A.: On the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra. Z Naturforsch 57a, 255–262 (2002)

    Google Scholar 

  39. Kawski, A.: Der Einfluss Polarer Moleküle auf die Elektronenspektren von 4-Aminophthalimid. Acta Phys. Pol. 25, 285–290 (1964)

    CAS  Google Scholar 

  40. Kawski, A., Bojarski, P., Kuklinski, B.: Estimation of ground- and excited-state dipole moments of Nile Red dye from solvatochromic effect on absorption and fluorescence spectra. Chem. Phys. Lett. 463, 410–412 (2008)

    Article  CAS  Google Scholar 

  41. Kawski, A., Rabek, J.F. (eds.): Progress in Photochemistry and Photophysics, vol. 5, p. 1. CRC Press, Boca Raton (1992)

    Google Scholar 

  42. Lippert, E.: Dipol moment und Elektronenstruktur von angeregten Molekülen. Z. Naturforsch 10, 541–545 (1955)

    Article  Google Scholar 

  43. Mataga, N., Kaifu, Y., Koizumi, M.: Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bull. Chem. Soc. Jpn 29, 465–470 (1956)

    Article  CAS  Google Scholar 

  44. Bakhshiev, N.G.: Universal intermolecular interactions and their effect on the position of the electronic spectra of molecules in two component solutions. Opt. Spektrosk. 16, 821–832 (1964)

    CAS  Google Scholar 

  45. Chamma, A., Viallet, P.: Determination du moment dipolaire d’une molecule dans un etat excite singulet. CR Acad. Sci. Paris Ser. C 270, 1901–1904 (1970)

    CAS  Google Scholar 

  46. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

  47. Lide, D.R. (ed.): Handbook Chemistry and Physics, 76th edn. CRC Press, Boca Raton (1995)

    Google Scholar 

  48. Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics, 96th edn. CRC Press, Boca Raton (2015)

    Google Scholar 

  49. Lide, D.R. (ed.): CRC Handbook Chemistry and Physics, 80th edn. CRC Press, New York (1999)

    Google Scholar 

  50. Reichardt, C.: Emperical parameters of solvent polarity and chemical reactivity. In: Ratajczak, H., Orville-Thomas, W.J. (eds.) Molecular Interactions, vol. 3. Wiley, Hoboken (1982)

    Google Scholar 

  51. Frisch, M.J., et al.: Gaussian 09, Revision A.1. Gaussian Inc., Wallingford (2009)

    Google Scholar 

  52. Dennington, R., Keith, T., Milam, J.: GaussView, Version 5. Semichem Inc., Shawnee Mission (2009)

    Google Scholar 

  53. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  54. Takeshi, Y., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004)

    Article  CAS  Google Scholar 

  55. Gülseven Sıdır, Y., Sıdır, İ., Berber, H., Türkoğlu, G.: Solvatochromic behavior and electronic structure of some symmetric 2-aminophenol Schiff base derivatives. J. Mol. Liq. 199, 57–66 (2014)

    Article  CAS  Google Scholar 

  56. Sıdır, İ., Gülseven Sıdır, Y., Berber, H., Demiray, F.: Emerging ground and excited state dipole moments and external electric field effect on electronic structure. A solvatochromism and theoretical study on 2-((phenylimino)methyl)phenol derivatives. J. Mol. Liq. 206, 56–67 (2015)

    Article  CAS  Google Scholar 

  57. Gülseven Sıdır, Y., Pirbudak, G., Berber, H., Sıdır, İ.: Study on the electronic and photophysical properties of the substitute-((2-phenoxybenzylidene)amino)phenol derivatives: synthesis, solvatochromism, electric dipole moments and DFT calculations. J. Mol. Liq. 242, 1096–1110 (2017)

    Article  CAS  Google Scholar 

  58. Sıdır, İ., Gülseven Sıdır, Y., Berber, H., Türkoğlu, G.: Specific and non-specific interaction effect on the solvatochromism of some symmetric (2-hydroxybenzilydeamino)phenoxy Schiff base derivatives. J. Mol. Liq. 215, 691–703 (2016)

    Article  CAS  Google Scholar 

  59. López, M.C., Barón, I.M.: Liquid crystal birefringence and electric dipole moment relationship with temperature, weak magnetic field and molecular geometry. J. Mol. Liq. 44(1), 63–71 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate Bitlis Eren University Research Foundation for financial support. Project number: BEBAP-2014.05. The authors greatly acknowledge the support of Bitlis Eren University, Scientific and Technological Application and Research center. The authors greatly thanks to Bitlis Eren University for supporting this study by Gaussian 09 W and GaussView 5.0 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadigar Gülseven Sıdır.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gülseven Sıdır, Y., Berber, H. & Sıdır, İ. The Dipole Moments and Solvatochromism of ((4-(Benzyloxy)benzylidene)amino)phenol Compounds as Solvatochromic Materials. J Solution Chem 48, 775–806 (2019). https://doi.org/10.1007/s10953-019-00885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00885-z

Keywords

Navigation