Skip to main content
Log in

Solvatochromism and Optoelectronic Properties of Thiosemicarbazone Derivatives Having π-Conjugated Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The electronic structures, solvatochromism, and LSER (Linear Solvation Energy Relationship) properties of thiosemicarbazone derivatives having five different π-conjuged systems have been investigated. UV–Vis absorption spectra of TSC (Thiosemicarbazone) derivatives have been measured in 18 solvent media with different polarities. The global electronic transition in these compounds is described as ππ* electronic transition resulting from the resonance in the thiosemicarbazone group. The other lower wavelength maxima are denoted to the ππ* electronic transition in the indole ring and the nπ* electronic transition in the carboxyl group. To determine as analytical solvent–solute interactions of global electronic transitions has been studied with using LSERs with using Kamlet–Taft and Catalán parameters. The solvatochromic models between electronic transition wavenumbers with Reichardt parameter, and Marcus solvent function have been generated. Optoelectronic properties have been investigated using the Moss, Ravindra, Herve-Vándamme, Kumar, Singh, and Reddy relationships. According to Eg (molecular energy gap) values, the investigated compounds can be considered organic semiconductor materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hussain, M., Jawaria, R., Shafiq, Z., Abbas, G., Naseer, M.M.: Ferrocene-based thiosemicarbazones: solvent effect on thiol-thione tautomerism and conformational polymorphism. J. Organomet. Chem. 846, 121–128 (2017). https://doi.org/10.1016/j.jorganchem.2017.05.005

    Article  CAS  Google Scholar 

  2. Bingül, M.: Synthesis of indole-3-carboxyaldehyde thiosemicarbazone derivatives and investigation of antioxidant and anticholinesterase properties. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 19, 317–327 (2019). https://doi.org/10.35414/akufemubid.542712

    Article  Google Scholar 

  3. Tom, L., Aiswarya, N., Sreejith, S.S., Kurup, M.P.: Self-organized three dimensional architectures based on non-covalent interactions in square planar Cu (II) thiosemicarbazone: solvent mediated crystallization and EPR based correlation study. Inorg. Chim. Acta 473, 223–235 (2018). https://doi.org/10.1016/j.ica.2018.01.005

    Article  CAS  Google Scholar 

  4. İlhan-Ceylan, B., Bolukbasi, O., Yilmaz, A., Kaya, K., Kurt, Y., Ülküseven, B.: Synthesis, spectroscopic characterization and quantum chemical studies of a dioxomolybdenum (VI) complex with an N S-substituted pyridoxal thiosemicarbazone. Polyhedron 193, 114884 (2021). https://doi.org/10.1016/j.poly.2020.114884

    Article  Google Scholar 

  5. Gülseven, Y., Taşal, E., Sıdır, İ, Güngör, T., Berber, H., Öğretir, C.: Solvatochromic effect studies on the absorption spectra of 4-((2-ethylphenyl)diazenyl)benzene-1,3-diol and 2-((2-ethylphenyl)diazenyl)benzene-1,3,5-triol molecules. Int. J. Hydrog. Energy 34(12), 5255–5259 (2009). https://doi.org/10.1016/j.ijhydene.2008.10.070

    Article  CAS  Google Scholar 

  6. Gülseven Sıdır, Y., Sıdır, İ, Taşal, E., Ermiş, E.: Studies on the electronic absorption spectra of some monoazo derivatives. Spectrochim. Acta Part A 78, 640–647 (2011). https://doi.org/10.1016/j.saa.2010.11.040

    Article  CAS  Google Scholar 

  7. Gülseven Sıdır, Y., Sıdır, İ, Berber, H., Taşal, E.: UV-spectral changes for some azo compounds in the presence of different solvents. J. Mol. Liq. 162, 148–154 (2011). https://doi.org/10.1016/j.molliq.2011.07.002

    Article  CAS  Google Scholar 

  8. Sıdır, İ, Gülseven Sıdır, Y., Berber, H., Taşal, E.: A study on solvatochromism of some monoazo dye derivatives. J. Mol. Liq. 178, 127–136 (2013). https://doi.org/10.1016/j.molliq.2012.11.011

    Article  CAS  Google Scholar 

  9. Gülseven Sıdır, Y., Sıdır, İ, Berber, H., Türkoğlu, G.: Solvatochromic behavior and electronic structure of some symmetric 2-aminophenol Schiff base derivatives. J. Mol. Liq. (2014). https://doi.org/10.1016/j.molliq.2014.08.018

    Article  Google Scholar 

  10. Gülseven Sıdır, Y., Berber, H., Sıdır, İ: The solvatochromism, ground&excited state electric dipole moments and molecular electronic properties of ((4-phenoxybenzyliden)amino)phenol compounds. J. Solution Chem. 48, 775–806 (2019). https://doi.org/10.1007/s10953-019-00885-z

    Article  CAS  Google Scholar 

  11. Gülseven Sıdır, Y.: The solvatochromism, electronic structure, electric dipole moments and DFT calculations of benzoic acid liquid crystals. Liq. Crystals 47(10), 1435–1451 (2020). https://doi.org/10.1080/02678292.2020.1733685

    Article  CAS  Google Scholar 

  12. Sıdır, İ, Gülseven Sıdır, Y.: Investigation on the interactions of E-4 methoxycinnamic acid with solvent: Solvatochromism, electric dipole moment and pH effect. J. Mol. Liq. 249, 1161–1171 (2018). https://doi.org/10.1016/j.molliq.2017.11.136

    Article  CAS  Google Scholar 

  13. Kandemirli, F., Choudhary, M.I., Siddiq, S., Saracoglu, M., Sayiner, H., Arslan, T., Erbay, A., Köksoy, B.: Quantum chemical calculations for some ısatin thiosemicarbazones. Quantum Chem. Mol. Innovat. 3, 25–58 (2012)

    Google Scholar 

  14. Ganim, M.A., Baloglu, M.C., Aygun, A., Altunoglu, Y.C., Sayiner, H.S., Kandemirli, F., Sen, F.: Analysis of DNA protection, interaction and antimicrobial activity of isatin derivatives. Int J. Biol. Macromol. 122, 1271–1278 (2019). https://doi.org/10.1016/j.ijbiomac.2018.09.084

    Article  CAS  PubMed  Google Scholar 

  15. Kandemirli, F., Akkaya, Y., Vurdu, C.D.: Synthesis and quantum chemical calculations of 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazone and its zinc(II) complex. Asian J. Chem. (2013). https://doi.org/10.14233/ajchem.2013.15221

    Article  Google Scholar 

  16. Kandemirli, F., Arslan, T., Koksoy, B., Yilmaz, M.: Synthesis, characterization and theoretical calculations of 5-methoxyisatin-3-thiosemicarbazone derivatives. J. Chem. Soc. Pak. 31(3), 498–504 (2009)

    CAS  Google Scholar 

  17. Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships 23: A comprehensive collection of the solvatochromic parameters, π*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. (1983). https://doi.org/10.1021/jo00165a018

    Article  Google Scholar 

  18. Reichardt, C.: Solvents and Solvent Effects in Organic Chemistry. VCH, New York (2008)

    Google Scholar 

  19. Reichardt, C., Welton, T.: Solvents and Solvent Effects in Organic Chemistry. Wiley, New York (2011)

    Google Scholar 

  20. Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method 2: the alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886 (1976). https://doi.org/10.1021/ja00426a036

    Article  Google Scholar 

  21. Abboud, J.L.M., Kamlet, M.J., Taft, R.W.: An examination of linear solvation energy relationships. Prog. Phy. Org. Chem. 13, 485 (1981). https://doi.org/10.1002/9780470171929.ch6

    Article  Google Scholar 

  22. Koppel, I.A., Palm, V.M.: The Influence of the solvent on organic reactivity. In: Chapman, N.B., Shorter, J.S. (eds.) Advances in Linear Free Energy Relationships. Plenum Press, London (1972)

    Google Scholar 

  23. Valeur, B.: Molecular Fluorescence-Principles and Applications. Wiley, Weinheim (2002)

    Google Scholar 

  24. Catalán, J.: Toward a generalized treatment of the solvent effect based on four empirical scales: dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 113(17), 5951–5960 (2009). https://doi.org/10.1021/jp8095727

    Article  CAS  PubMed  Google Scholar 

  25. Marcus, R.A.: Free energy of nonequilibrium polarization systems. III. statistical mechanics of homogeneous and electrode systems. J. Chem. Phys. 39, 1734 (1963). https://doi.org/10.1063/1.1734522

    Article  CAS  Google Scholar 

  26. Marcus, R.A.: On the theory of shifts and broadening of electronic spectra of polar solutes in polar media. J. Chem. Phys. 43, 1261 (1965). https://doi.org/10.1063/1.1696913

    Article  CAS  Google Scholar 

  27. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 24, 2319–2358 (1994). https://doi.org/10.1021/cr00032a005

    Article  Google Scholar 

  28. Tauc, J., Menth, A.: States in the gap. J. Non-Crystal. Solid. 8–10, 569–585 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  29. Tauc, J.: Amorphous and Liquid Semiconductors. Plenum Press, New York (2000)

    Google Scholar 

  30. El-Asmy, A.A., Shaibi, Y.M., Shedaiwa, I.M., Khattab, M.A.: Coordination compounds of some thiosemicarbazone derivatives: their preparation, characterization and electrical properties. Synth. React. Inorg. Met.-Org. Chem. (1990). https://doi.org/10.1080/00945719008048148

    Article  Google Scholar 

  31. Moss, T.S.: Relations between the refractive index and energy gap of semiconductors. Phys. Stat. Sol. B 131, 415 (1985). https://doi.org/10.1002/pssb.2221310202

    Article  CAS  Google Scholar 

  32. Moss, T.S.: A Relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc. Phys. Soc. B (1950). https://doi.org/10.1088/0370-1301/63/3/302

    Article  Google Scholar 

  33. Ravindra, N.M., Auluck, S., Srivastava, V.K.: On the penn gap in semiconductors. Phys. Stat. Sol. B 93(2), K155–K160 (1979). https://doi.org/10.1002/pssb.2220930257

    Article  CAS  Google Scholar 

  34. Herve, P., Vandamme, L.K.J.: General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35(4), 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

    Article  CAS  Google Scholar 

  35. Kumar, V., Singh, J.K.: Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48(8), 571–574 (2010)

    CAS  Google Scholar 

  36. Reddy, R., Anjaneyulu, S.: Analysis of the Moss and Ravindra relations. Phys. Stat. Sol. B (1992). https://doi.org/10.1002/pssb.2221740238

    Article  Google Scholar 

  37. Akinchan, N.T., Akinchan, R.: Synthesis and spectroscopic studies on platinum (II) complexes of thiosemicarbazone derivatives of p-anisaldehyde, p-tolualdehyde and p-vanilin. Indian J. Chem. 41A, 1152–1156 (2002)

    CAS  Google Scholar 

  38. Hansch, C., Leo, A., Taft, R.W.: A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991). https://doi.org/10.1021/cr00002a004

    Article  CAS  Google Scholar 

  39. Chapman, N.B., Shorter, J. (eds.): Correlation Analysis in Chemistry : Recent Advances. Plenum Press, New York (2012)

    Google Scholar 

  40. Aaron, J.J., Tive, A., Villiers, C., Parklanyi, C., Bouin, D.: Electronic absorption and fluorescence spectra of indole derivatives: quantatie treatment of the substituent effects and a theoretical study. Croatia Chem. Acta 56(2), 157–168 (1983)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks Bitlis Eren University for their support to the BEBAP2013.04 and BEBAP2014.05 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadigar Gülseven Sıdır.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 672 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kara, Y.E., Sıdır, Y.G., Sıdır, İ. et al. Solvatochromism and Optoelectronic Properties of Thiosemicarbazone Derivatives Having π-Conjugated Systems. J Solution Chem 52, 570–587 (2023). https://doi.org/10.1007/s10953-023-01248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01248-5

Keywords

Navigation