Skip to main content
Log in

Effect of Hypercapnia and Hypoxia on the Physiology and Metabolism of the Cerebral Endothelium under Ischemic Conditions

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The review addresses the role of blood–brain barrier (BBB) dysfunction in neurological pathology, and describes epigenetic and metabolic regulators of its functional activity and structural integrity. It also provides information on the neuroprotective effects of hypoxia and hypercapnia with an assessment of their impact on the functioning of the BBB. In addition, the review provides arguments for the co-administration of drugs, which modulate BBB metabolism and permeability, and hypercapnic hypoxia to achieve a higher neuroprotective efficacy. The provided data demonstrate that there is a significant number of drugs with a high potential to increase neuroprotective efficacy when combined with hypercapnic hypoxia. These drugs include antioxidants, endothelial cell and membrane protectors, JNK inhibitors, and energotropic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Tregub P, Kulikov V, Motin Y, Bespalov A, Osipov I (2015) Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. J Stroke Cerebrovasc Dis 24(2):381–387 https://doi.org/10.1016/jjstrokecerebrovasdis201409003

    Article  PubMed  Google Scholar 

  2. Obrenovitch TP (2008) Molecular Physiology of Preconditioning-Induced Brain Tolerance to Ischemia. Physiol Rev 88:211–247. https://doi.org/10.1152/physrev000392006

    Article  CAS  PubMed  Google Scholar 

  3. Kuvacheva NV, Morgun AV, Khilazheva ED, Boytsova EB, Ruzaeva VA, Shuvaev AN, Malinovskaja NA, Pozhilenkova EA, Salmina AB (2016) Features of proliferation of bloodbrain barrier cells upon suppression of HIF-1 activity in vitro. Sib Med Rev 98(2):51–56. (In Russ).

    Article  Google Scholar 

  4. Berezhanskaja SB, Luk’yanova EA, Zhavoronkova TJe, Kaushanskaja EJa, Sozaeva DI (2017) Sovremennaya koncepciya strukturno-funkcional’noi organizatsii gematoentsefalicheskogo bar’era i osnovnye mehanizmy narusheniya ego rezistentnosti. Pediatrija Zhurn im GN Speranskogo 96(1):135–141. (In Russ).

    Google Scholar 

  5. Salmina AB, Komleva JuK, Malinovskaja NA, Morgun AV, Tepljashina EA, Lopatina OL, Gorina JaV, Haritonova EV, Hilazheva ED, Shuvaev AN (2021) Povrezhdenie gematojencefalicheskogo bar’era pri stresse i nejrodegeneracii: biohimicheskie mehanizmy i novye modeli dlja transljacionnyh issledovanij. Biochemistry 86(6):917–932. https://doi.org/10.31857/S0320972521060130

    Article  Google Scholar 

  6. Ballabh P, Braun A, Nedergaard M (2014) The blood-brain barrier: an overview structure, regulation and clinical implications. Neurobiology of Disease 16:1–13. https://doi.org/10.1016/j.nbd.2003.12.016

    Article  CAS  Google Scholar 

  7. Tran KA, Zhang X, Predescu D, Huang X, Machado RF, Göthert JR, Malik AB, Valyi-Nagy T, Zhao YY (2016) Endothelial β-catenin signaling is required for maintaining adult bloodbrain barrier integrity and central nervous system homeostasis. Circulation 133(2):177–186. https://doi.org/10.1161/CIRCULATIONAHA.115.015982

    Article  CAS  PubMed  Google Scholar 

  8. Liu JY, Thom M, Catarino CB, Martinian L, Figarella-Branger D, Bartolomei F, Koepp M, Sisodiya SM (2012) Neuropathology of the blood-brain barrier and pharmaco-resis tance in human epilepsy. Brain 135(10):3115–3133. https://doi.org/10.1093/brain/aws147

    Article  PubMed  Google Scholar 

  9. Gang L, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hammer HM (2011) Cytokines and epilepsy. Seizure-Eur J Epilep 20(3):249–256. https://doi.org/10.1016/j.seizure.2010.12.005

    Article  Google Scholar 

  10. Morgun AV, Ovcharenko NV, Taranushenko TE, Ustinova SI, Okuneva OS, Antonova SK, Gilyazova DF, Uspenskaya OA, Salmina AB (2013) Markers of apoptosis and neurospecific proteins in the diagnosis of perinatal lesions of the central nervous system in newborns. Sib Med Rev 3(81):3–11. (In Russ).

    Article  Google Scholar 

  11. Kuvacheva NV, Salmina AB, Komleva YuK, Malinovskaia NA, Morgun AV, Pozhilenkova EA, Zamaĭ GS, Iauzina NA, Petrova MM (2013) Permeability of the hematoencephalic barrier in normalcy, brain development pathology and neurodegeneration. Zh Nevrol Psikhiatr im SS Korsakova 113(4):80–85. (In Russ).

    CAS  Google Scholar 

  12. Chekhonin VP, Lebedev SV, BIinov DV, Gurina OI, Semenova AV, Lazarenko IP, Petrov SV, Ryabukhin LA, Rogatkin SO, Volodin NN (2004) Pathogenetic role of impaired permeability of the blood-brain barrier for neurospecific proteins in perinatal hypoxic-ischemic lesions of the central nervous system in newborns. Vopr Ginеcol Akush Perinat 3(2):50–61. (In Russ).

    Google Scholar 

  13. Chehonin VP, Lebedev SV, Dmitrieva TB, Blinov DV, Gurina OI, Semenova AV, Volodin NN (2003) Enzyme immunoassay of NSE and GFAP as a criterion for dynamic assessment of the permeability of the blood-brain barrier of rats with perinatal hypoxic-ischemic CNS lesion. Bull Exp Biol Med 136 (9):299–303. (In Russ).

    Google Scholar 

  14. Abbott NJ, Ronnback L, Hansson E (2017) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53. https://doi.org/10.1038/nrn1824

    Article  CAS  Google Scholar 

  15. Chalbot S, Zetterberg H, Blennow K, Fladby T, Grundke-Iqbal I, Iqbal K (2010) Cerebrospinal Fluid Secretory Ca2+ dependent phospholipase A2 activity: a biomarker of blood-cerebrospinal fluid barrier permeability. Neurosci Lett 478(3):179–183. https://doi.org/10.1016/j.neulet.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vanyushin BF (2006) DNA methylation and epigenetics. Genetics 42(9):1186–1199. (In Russ).

    Google Scholar 

  17. Netrebenko OK, Scheplyagina LA, Gribakin SG (2020) Metabolic programming and epigenetics in pediatrics. Treatment and Prevention 10(1):29–35. (In Russ).

    Google Scholar 

  18. Meng Q, Yang G, Yang Y, Ding F, Hu F (2020) Protective effects of histone deacetylase inhibition by Scriptaid on brain injury in neonatal rat models of cerebral ischemia and hypoxia. Int J Clin Exp Pathol 13(2):179–191.

    PubMed  PubMed Central  Google Scholar 

  19. Jambhekar A, Dhall A, Shi Y (2019) Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 20(10):625–641. https://doi.org/10.1038/s41580-019-0151-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yao B, Jin P (2014) Unlocking epigenetic codes in neurogenesis. Genes Dev 28(12):1253–1271. https://doi.org/10.1101/gad.241547.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Churilova AV, Gluschenko TS, Rybnikova EA, Samoilov MO (2018) The effect of histone deacetylase inhibitor on the expression level of glucococrticoid receptor in rat forebrain under hypoxia. Cytology 60(12):1016–1021. (In Russ).

    Google Scholar 

  22. Pierre WC, Legault LM, Londono I, McGraw S, Lodygensky GA (2020) Alteration of the brain methylation landscape following postnatal inflammatory injury in rat pups. FASEB J 34(1):432–445. https://doi.org/10.1096/fj.201901461R

    Article  CAS  PubMed  Google Scholar 

  23. Deniz BF, Confortim HD, Miguel PM, Bronauth L, Fernandes IR, Muotri AR, Pereira LO (2021) High gestational folic acid supplementation prevents hypoxia-ischemia-induced caspase-3 augmenting without changing synapsin and H3 methylation levels in the rat hippocampus. Int J Dev Neurosci 81(6):510–519. https://doi.org/10.1002/jdn.10132

    Article  CAS  PubMed  Google Scholar 

  24. Tornabene E, Helms HCC, Pedersen SF, Brodin B (2019) Effects of oxygen-glucose deprivation (OGD) on barrier properties and mRNA transcript levels of selected marker proteins in brain endothelial cells/astrocyte co-cultures. PLoS One 14:e0221103. https://doi.org/10.1371/journal.pone.0221103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rink C, Khanna S (2017) Micro RNA in ischemic stroke etiology and pathology. Physiol Genomics 43(10):521–528. https://doi.org/10.1152/physiolgenomics.00158.2017

    Article  Google Scholar 

  26. Shen G, Ma Q (2020) MicroRNAs in the Blood-Brain Barrier in Hypoxic-Ischemic Brain Injury. Curr Neuropharmacol 18(12):1180-1186. https://doi.org/10.2174/1570159X18666200429004242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ek CJ, D'Angelo B, Baburamani AA, Lehner C, Leverin AL, Smith PL, Nilsson H, Svedin P, Hagberg H, Mallard C (2015) Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia. J Cereb Blood Flow Metab 35(5):818– 827. https://doi.org/10.1038/jcbfm.2014.255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cerutti C, Ridley AJ (2017) Endothelial cell-cell adhesion and signaling. Exp Cell Res 358(1):31–38. https://doi.org/10.1016/j.yexcr.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi Y, Jiang X, Zhang L, Pu H, Hu X, Zhang W, Cai W, Gao Y, Leak RK, Keep RF, Bennett MV, Chen J (2017) Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood-brain barrier disruption after ischemic brain injury. Proc Natl Acad Sci U S A 114(7):1243–1252. https://doi.org/10.1073/pnas.1621174114

    Article  CAS  Google Scholar 

  30. Fan F, Yang J, Xu Y, Guan S (2018) MiR-539 targets MMP-9 to regulate the permeability of blood-brain barrier in ischemia/reperfusion injury of brain. Neurochem Res 43(12):2260–2267. https://doi.org/10.1007/s11064-018-2646-0

    Article  CAS  PubMed  Google Scholar 

  31. Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci 38(1):32–50. https://doi.org/10.1523/JNEUROSCI.1348-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Wang MD, Xia YP, Gao Y, Zhu YY, Chen SC, Mao L, He QW, Yue ZY, Hu B (2018) MicroRNA-130a regulates cerebral ischemia-induced blood-brain barrier permeability by targeting Homeobox A5. FASEB J 32(2):935–944. https://doi.org/10.1096/fj.201700139RRR

    Article  CAS  PubMed  Google Scholar 

  33. Huang L, Ma Q, Li Y, Li B, Zhang L (2018) Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp Neurol 300:41–50. https://doi.org/10.1016/j.expneurol.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  34. Pan J, Qu M, Li Y, Wang L, Zhang L, Wang Y, Tang Y, Tian HL, Zhang Z, Yang GY (2020) MicroRNA-126-3p/-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke 51(2):619–627. https://doi.org/10.1161/STROKEAHA.119.027531

    Article  CAS  PubMed  Google Scholar 

  35. Bernstein DL, Zuluaga-Ramirez V, Gajghate S, Reichenbach NL, Polyak B, Persidsky Y, Rom S (2020) miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab 40(10):1953–1965. https://doi.org/10.1177/0271678X19882264

    Article  CAS  PubMed  Google Scholar 

  36. Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X (2016) MiR-34a regulates bloodbrain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab 36(2):387–392. https://doi.org/10.1177/0271678X15606147

    Article  CAS  PubMed  Google Scholar 

  37. Hu H, Hone EA, Provencher EAP, Sprowls SA, Farooqi I, Corbin DR, Sarkar SN, Hollander JM, Lockman PR, Simpkins JW, Ren X (2020) MiR-34a interacts with cytochrome c and shapes stroke outcomes. Sci Rep 10(1):3233. https://doi.org/10.1038/s41598-020-59997-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Z, Li J, Tang N (2017) Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience 354:1–10. https://doi.org/10.1016/j.neuroscience.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  39. Yin KJ, Deng Z, Hamblin M, Xiang Y, Huang H, Zhang J, Jiang X, Wang Y, Chen YE (2018) Peroxisome proliferator-activated receptor delta regulation of miR-15a in ischemia-induced cerebral vascular endothelial injury. J Neurosci 30(18):6398–6408. https://doi.org/10.1523/JNEUROSCI.0780-10.2018

    Article  Google Scholar 

  40. Wan Y, Jin HJ, Zhu YY, Fang Z, Mao L, He Q, Xia YP, Li M, Li Y, Chen X, Hu B (2018) MicroRNA-149-5p regulates bloodbrain barrier permeability after transient middle cerebral artery occlusion in rats by targeting S1PR2 of pericytes. FASEB J 32(6):3133–3148. https://doi.org/10.1096/fj.201701121R

    Article  CAS  PubMed  Google Scholar 

  41. Chan YC, Banerjee J, Choi SY, Sen CK (2012) miR-210: the master hypoxamir. Microcirculation 19(3):215–223. https://doi.org/10.1111/j.1549- 8719.2011.00154.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma Q, Dasgupta C, Li Y, Huang L, Zhang L (2017) MicroRNA-210 suppresses junction proteins and disrupts blood-brain barrier integrity in neonatal rat hypoxic-ischemic brain injury. Int J Mol Sci 18(7):E1356. https://doi.org/10.3390/ijms18071356

    Article  CAS  PubMed  Google Scholar 

  43. Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F (2021) miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 36:685–706. https://doi.org/10.1089/ars.2021.0200

    Article  CAS  PubMed  Google Scholar 

  44. Ma Q, Zhang L, Pearce WJ (2019) MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 317(1):3–19. https://doi.org/10.1152/ajpcell.00022.2019

    Article  CAS  Google Scholar 

  45. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C (2015) miR-210 mediates vagus nerve stimulationinduced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem 134(1):173–181. https://doi.org/10.1111/jnc.13097

    Article  CAS  PubMed  Google Scholar 

  46. Meng ZY, Kang HL, Duan W, Zheng J, Li QN, Zhou ZJ (2018) MicroRNA-210 promotes accumulation of neural precursor cells around ischemic foci after cerebral ischemia by regulating the SOCS1-STAT3-VEGF-C pathway. J Am Heart Assoc 7(5):e005052. https://doi.org/10.1161/JAHA.116.005052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garberg HT, Huun MU, Baumbusch LO, Åsegg-Atneosen M, Solberg R, Saugstad OD (2017) Tempora profile of circulating microRNAs after global hypoxia-ischemi in newborn piglets. Neonatology 111(2):133–139. https://doi.org/10.1159/000449032

    Article  CAS  PubMed  Google Scholar 

  48. Whitehead CL, Teh WT, Walker SP, Leung C, Larmour L, Tong S (2018) Circulating MicroRNAs in maternal blood as potential biomarkers for fetal hypoxia in-utero. PLoS One 8(11):e78487. https://doi.org/10.1371/journal. pone.0078487

    Article  Google Scholar 

  49. Ge X, Han Z, Chen F, Wang H, Zhang B, Jiang R, Lei P, Zhang J (2015) MiR-21 alleviates secondary blood-brain barrier damage after traumatic brain injury in rats. Brain Res 1603:150–157. https://doi.org/10.1016/j.brainres.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  50. Yao X, Wang Y, Zhang D (2018) microRNA-21 confers neuroprotection agains cerebral ischemia-reperfusion injury and alleviates blood-brain barrier disruption in rats via the MAPK signaling pathway. J Mol Neurosci 65(1):43–53. https://doi.org/10.1007/s12031-018-1067-5

    Article  CAS  PubMed  Google Scholar 

  51. Salmina AB, Morgun AV, Kuvacheva NV, Pozhilenkova EA, Solonchuk JuR, Lopatina OL, Komleva JuK, Taranushenko TE (2014) Endothelial Progenitor Cells in the Development and Recovery of the Cerebral Endothelium (Review). Sovrem Technol Med 6(4):213–222. (In Russ)].

    Google Scholar 

  52. Siegenthaler JA, Sohet F, Daneman R (2013) ‘Sealing off the CNS’: cellular and molecular regulation of blood-brain barriergenesis. Curr Opin Neurobiol 23(6):1057–1064. https://doi.org/10.1016/j.conb.2013.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Masada T, Hua Y, Xi G, Ennis SR, Keep RF (2013) Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab 21:22–33. https://doi.org/10.1097/00004647-200101000-00004

    Article  Google Scholar 

  54. Zhang FY, Chen XC, Ren HM, Bao WM (2006) Effects of ischemic preconditioning on blood-brain barrier permeability and MMP-9 expression of ischemic brain. Neurol Res 28:21–24. https://doi.org/10.1179/016164106X91825

    Article  PubMed  Google Scholar 

  55. Ikeda T, Xia XY, Xia YX, Ikenoue T (1999) Hyperthermic preconditioning prevents blood-brain barrier disruption produced by hypoxia-ischemia in newborn rat. Brain Res 117:53–58. https://doi.org/10.1016/s0165-3806(99)00097-8

    Article  CAS  Google Scholar 

  56. Maruoka N, Murata T, Omata N, Fujibayashi Y, Yonekura Y, Wada Y (2012) Hypoxic tolerance induction in rat brain slices following 3-nitropropionic acid pretreatment as revealed by dynamic changes in glucose metabolism. Neurosci Lett 319:83–86. https://doi.org/10.1016/s0304-3940(01)02542-3

    Article  Google Scholar 

  57. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2017) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709. https://doi.org/10.1038/sj.jcbfm.9600375

    Article  CAS  Google Scholar 

  58. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, Wang X, Lo EH (2006) Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med 12:441–445. https://doi.org/10.1038/nm1387

    Article  CAS  PubMed  Google Scholar 

  59. Tohidpour A, Morgun AV, Boitsova EB, Malinovskaya NA, Martynova GP, Khilazheva ED, Kopylevich NV, Gertsog GE, Salmina AB (2017) Neuroinflammation and infection: molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol 7:276. https://doi.org/10.3389/fcimb.2017.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frijns CJ, Kappelle LJ (2012) Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 33:2115–2122. https://doi.org/10.1161/01.str.0000021902.33129.69

    Article  Google Scholar 

  61. Zhang W, Smith C, Shapiro A, Monette R, Hutchison J, Stanimirovic D (1999) Increased expression of bioactive chemokines in human cerebromicrovascular endothelial cells and astrocytes subjected to simulated ischemia in vitro. J Neuroimmunol 101:148–160. https://doi.org/10.1016/s0165-5728(99)00137-x

    Article  CAS  PubMed  Google Scholar 

  62. Zahler S, Kupatt C, Becker BF (2000) Endothelial preconditioning by transient oxidative stress reduces inflammatory responses of cultured endothelial cells to TNF-α. FASEB J 14:555–564. https://doi.org/10.1096/fasebj.14.3.555

    Article  CAS  PubMed  Google Scholar 

  63. Zhou SG, Lei XY, Liao DF (2013) Effects of hypoxic preconditioning on the adhesion of neutrophils to vascular endothelial cells induced by hypoxia/reoxygenation. Zhongguo Wei Zhong Bing Ji Jiu Yi Xu 15:159–162.

    CAS  Google Scholar 

  64. Hilazheva ED, Pisareva NV, Morgun AV, Bojcova EB, Taranushenko TE, Frolova OV, Salmina AB (2017) Aktivatsiya laktatnyh retseptorov GPR81 stimuliruet mitohondrial’nyi biogenez v kletkah endoteliya cerebral’nyh mikrososudov. Ann Сlin Exp Neurol 11(1):34–39. (In Russ).

    Google Scholar 

  65. Verdegem D, Moens S, Stapor P, Carmeliet P (2014) Endothelial cell metabolism: parallels and divergences with cancer cell metabolism. Cancer Metab 2:19. https://doi.org/10.1186/2049-3002-2-19

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pavlides S, Whitaker-Menezes D, Castello-Cros R (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001. https://doi.org/10.4161/cc.8.23.10238

    Article  CAS  PubMed  Google Scholar 

  67. Bergersen LH, Gjedde A (2012) Is lactate a volume transmitter of metabolic states of the brain? Front Neuroenergetics 4:5. https://doi.org/10.3389/fnene.2012.00005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S (2016) Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 594(3):509-525. https://doi.org/10.1113/JP271301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jornayvaz FR, Shulman GI (2010) Regulation of mitochondrial biogenesis. Essays Biochem 47:69–84. https://doi.org/10.1042/bse0470069

    Article  CAS  PubMed  Google Scholar 

  70. Lin XW, Tang L, Yang J, Xu WH (2016) HIF-1 regulates insect lifespan extension by inhibiting c-Myc-TFAM signaling and mitochondrial biogenesis. Biochim Biophys Acta 1863:2594–2603. https://doi.org/10.1016/j.bbamcr.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  71. Ruzaeva VA, Morgun AV, Khilazheva ED, Kuvacheva NV, Pozhilenkova EA, Boitsova EB, Martynova GP, Taranushenko TE, Salmina AB (2016) Development of blood-brain barrier under the modulation of HIF activity in astroglialand neuronal cells in vitro. Biomed Khim 62:664–669. https://doi.org/10.18097/pbmc20166206664

    Article  CAS  PubMed  Google Scholar 

  72. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, Richard DE (2010) Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrialderived reactive oxygen species. Mol Biol Cell 21(18):3247–3257. https://doi.org/10.1091/mbc.E10-01-0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kulikov VP, Tregub PP, Kovzelev PD, Dorohov EA, Belousov AA (2015) Giperkapniya—al’ternativnyi gipoksii signal’nyi stimul dlya povysheniya HIF-1a i eritropoetina v golovnom mozge. Patol Fiziol Exp Ter 59(3):34–37. (In Russ)].

    Google Scholar 

  74. Tregub PP, Malinovskaya NA, Morgun AV, Osipova ED, Kulikov VP, Kuzovkov DA, Kovzelev PD (2020) Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia. Respir Physiol Neurobiol 278:103442. https://doi.org/10.1016/j.resp.2020.103442

    Article  CAS  PubMed  Google Scholar 

  75. Tregub PP, Malinovskaya NA, Kulikov VP, Kuzovkov DA (2021) Hypercapnia and its combination with hypoxia reduce the permeability of the blood-brain barrier in rats. Patol Fiziol Exp Ter 65(2):30–36. (In Russ).

    Google Scholar 

  76. Yang W, Wang Q, Chi L, Wang Y-Z, Cao H-L, Li W-Z (2019) Therapeutic hypercapnia reduces blood–brain barrier damage possibly via protein kinase Cε in rats with lateral fluid percussion injury. J Neuroinflamm 16:36.

    Article  Google Scholar 

  77. Tregub PP, Morgun AV, Osipova ED, Kulikov VP, Malinovskaya NA, Kuzovkov DA (2020) Hypercapnia and Hypoxia Stimulate Proliferation of Astrocytes and Neurons In Vitro. Bull Exp Biol Med 169(6):755–758. https://doi.org/10.1007/s10517-020-04972-w

    Article  CAS  PubMed  Google Scholar 

  78. Yang W, Zhang X, Wang N, Tan J, Fang X, Wang Q, Tao T, Li W (2016) Effects of acute systemic hypoxia and hypercapnia on brain damage in a rat model of hypoxia-ischemia. PLoS One 11:e0167359. https://doi.org/10.1371/journal.pone.0167359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kangwantas K, Pinteaux E, Penny J (2016) The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 13:25. https://doi.org/10.1186/s12974-016-0495-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wacker BK, Freie AB, Perfater JL, Gidday JM (2017) Junctional protein regulation by sphingosine kinase 2 contributes to blood-brain barrier protection in hypoxic preconditioning-induced cerebral ischemic tolerance. J Cereb Blood Flow Metab 32(6):1014–1023. https://doi.org/10.1038/jcbfm.2012.3

    Article  CAS  Google Scholar 

  81. Chi OZ, Mellender SJ, Barsoum S, Liu X, Weiss HR (2017) Hypoxic Preconditioning Increases Blood-Brain Barrier Disruption in the Early Stages of Cerebral Ischemia. Curr Neurovasc Res 14(1):26–31. https://doi.org/10.2174/1567202614666161104114821

    Article  CAS  PubMed  Google Scholar 

  82. Tregub P, Kulikov V, Bespalov A (2013) Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia in rats. Pathophysiology 3:165–170. https://doi.org/10.1016/j.pathophys.2013.09.001

    Article  Google Scholar 

  83. Kulikov VP, Kalanova LA, Tregub PP (2021) Potencirovanie zashhitnogo jeffekta giperkapnicheskoj gipoksii pri kombinacii s farmakologicheskimi nejroprotektorami. Patol Fiziol Exp Ter 3:21–25. (In Russ).

    Google Scholar 

  84. Shahmardanova SA, Gulevskaya ON, Seletskaya VV, Zelenskaja AV, Hananashvili JaA, Nefedov DA, Galenko-Jaroshevskii PA (2016) Antioxidants: classification, pharmacotherapeutic properties, use in practical medicine. J Fund Med Biol 3:4-15. (In Russ).

    Google Scholar 

  85. Ashor AW, Siervo M, Lara J, Oggioni C, Afshar S, Mathers JC (2015) Effect of vitamin C and vitamin E supplementation on endothelial function: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 113(8):1182–1194. https://doi.org/10.1017/S0007114515000227

    Article  CAS  PubMed  Google Scholar 

  86. Brüll V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Müller C, Langguth P, Alteheld B, Fimmers R, Stehle P, Egert S (2017) Acute intake of quercetin from onion skin extract does not influence postprandial blood pressure and endothelial function in overweight-to-obese adults with hypertension: a randomized, double-blind, placebo-controlled, crossover trial. Eur J Nutr 56(3):1347–1357. https://doi.org/10.1007/s00394-016-1185-1

    Article  CAS  PubMed  Google Scholar 

  87. Smirnova KV, Gil’dikov DI (2021) Comparative efficacy of antioxidant drugs in an in vitro experiment. Ros Veterin J 2:37–40 (In Russ).

    Google Scholar 

  88. Moskalenko SV, Shahmatov II, Bondarchuk JuA, Alekseeva OV, Ulitina OM (2018) The reaction of the hemostasis system in hypercapnic hypoxia after a course of mexidol using the method of thromboelastography. Kaz Med J 99(6):936–941. (In Russ).

    Article  Google Scholar 

  89. Khlebodarov FE, Mikhin VP, Tyurikov PYu (2009) Vascular endothelial dysfunction and its correction by cytoprotectors in patients with stable angina pectoris and arterial hypertension. Rus Cardiol J 6:34–39. (In Russ).

    Google Scholar 

  90. Semenenkov II, Pristrom MS (2019) Influence of the combined use of normobaric hypoxia and omega-3 polyunsaturated fatty acids on changes in the fatty acid composition of blood plasma and indicators of systemic immune inflammation in patients with coronary heart disease associated with chronic obstructive pulmonary disease. Cardiovasc Ter Prof 18(S1):136–137. (In Russ).

    Google Scholar 

  91. Shvedova MV, Anfinogenova JaD, Popov SV, Shhepetkin IA, Atochin DN (2016) C-Jun n-terminal kinases and their modulators in ischemia-reperfusion myocardial injury (literature review). Sib J Clin Exp Med 31(3):7–15. (In Russ).

    Google Scholar 

  92. Plotnikov MB, Chernysheva GA, Smolyakova VI, Aliev OI, Trofimova ES, Sherstoboev EY, Osipenko AN, Khlebnikov AI, Anfinogenova YJ, Schepetkin IA, Atochin DN (2020) Neuroprotective Effects of a Novel Inhibitor of c-Jun N-Terminal Kinase in the Rat Model of Transient Focal Cerebral Ischemia. Cells 9(8):1860. https://doi.org/10.3390/cells9081860

    Article  CAS  PubMed Central  Google Scholar 

  93. Zhou Q, Lam PY, Han D, Cadenas E (2008) c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons. J Neurochem 104(2):325–335. https://doi.org/10.1111/j.1471-4159.2007.04957.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The writing of this review was state budget funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Tregub.

Ethics declarations

CONFLICT OF INTEREST

The author declares that he has no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 5, pp. 579–593https://doi.org/10.31857/S0869813922050120.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregub, P.P. Effect of Hypercapnia and Hypoxia on the Physiology and Metabolism of the Cerebral Endothelium under Ischemic Conditions. J Evol Biochem Phys 58, 769–780 (2022). https://doi.org/10.1134/S0022093022030127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022030127

Keywords:

Navigation