Skip to main content

Advertisement

Log in

MiR-539 Targets MMP-9 to Regulate the Permeability of Blood–Brain Barrier in Ischemia/Reperfusion Injury of Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral ischemia/reperfusion (I/R) injury severely threatens human life, while the potential mechanism underlying it is still need further exploration. The rat model of cerebral I/R injury was established using middle cerebral artery occlusion (MCAO). The rat microvascular endothelial cell line bEND.3 was exposed to oxygen–glucose deprivation/reperfusion (OGD/R) to mimic ischemic condition in vitro. Evans blue was performed to determine the blood–brain barrier (BBB) permeability. Real-time PCR and western blot were performed to determine gene expression in mRNA and protein level, individually. Luciferase reporter assay was conducted to determine the relationship between miR-539 and MMP-9. The infarct volume and BBB permeability of cerebral (I/R) rats were significantly greater than Sham group. The expression of miR-539 was decreased, while MMP-9 was increased in the brain tissues of I/R injury rats and OGD/R pretreated bEND.3. Up-regulated miR-539 in OGD/R pretreated bEND.3 significantly promoted the BBB permeability. MiR-539 targets MMP-9 to regulate its expression. OGD/R treatment significantly promoted the BBB permeability in bEND.3, miR-539 mimic transfection abolished the effects of OGD/R, while co-transfected with pcDNA-MMP-9 abolished the effects of miR-539 mimic. MiR-539 targets MMP-9 and further regulates the BBB permeability in cerebral I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tsai CF, Thomas B, Sudlow CL (2013) Epidemiology of stroke and its subtypes in Chinese vs white populations: a systematic review. Neurology 81:264–272

    Article  Google Scholar 

  2. Lou Z, Wang AP, Duan XM, Hu GH, Song GL, Zuo ML, Yang ZB (2018) Upregulation of NOX2 and NOX4 mediated by TGF-beta signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury. Cell Physiol Biochem 46:2103–2113

    Article  CAS  Google Scholar 

  3. Zhang YS, Liu B, Luo XJ, Li TB, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Hu CP, Li YJ, Peng J, Li Q (2015) Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 110:38

    Article  Google Scholar 

  4. Khatri R, McKinney AM, Swenson B, Janardhan V (2012) Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79:S52–S57

    Article  Google Scholar 

  5. Wang Z, Leng Y, Tsai LK, Leeds P, Chuang DM (2011) Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 31:52–57

    Article  Google Scholar 

  6. Jin G, Arai K, Murata Y, Wang S, Stins MF, Lo EH, van Leyen K (2008) Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39:2538–2543

    Article  CAS  Google Scholar 

  7. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709

    Article  CAS  Google Scholar 

  8. Kamada H, Yu F, Nito C, Chan PH (2007) Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke 38:1044–1049

    Article  CAS  Google Scholar 

  9. Magnoni S, Baker A, George SJ, Duncan WC, Kerr LE, McCulloch J, Horsburgh K (2004) Differential alterations in the expression and activity of matrix metalloproteinases 2 and 9 after transient cerebral ischemia in mice. Neurobiol Dis 17:188–197

    Article  CAS  Google Scholar 

  10. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    Article  CAS  Google Scholar 

  11. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25:6401–6408

    Article  CAS  Google Scholar 

  12. Quan J, Qu J, Zhou L (2017) MicroRNA-539 inhibits glioma cell proliferation and invasion by targeting DIXDC1. Biomed Pharmacother 93:746–753

    Article  CAS  Google Scholar 

  13. Liu Y, Hong W, Zhou C, Jiang Z, Wang G, Wei G, Li X (2017) miR-539 inhibits FSCN1 expression and suppresses hepatocellular carcinoma migration and invasion. Oncol Rep 37:2593–2602

    Article  CAS  Google Scholar 

  14. Wen D, Li S, Jiang W, Zhu J, Liu J, Zhao S (2017) miR-539 inhibits human colorectal cancer progression by targeting RUNX2. Biomed Pharmacother 95:1314–1320

    Article  CAS  Google Scholar 

  15. Feng Y, Wang J, Yuan Y, Zhang X, Shen M, Yuan F (2018) miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7. FASEB J 32:1626–1639

    Article  CAS  Google Scholar 

  16. Shen J, Ma S, Chan P, Lee W, Fung PC, Cheung RT, Tong Y, Liu KJ (2006) Nitric oxide down-regulates caveolin-1 expression in rat brains during focal cerebral ischemia and reperfusion injury. J Neurochem 96:1078–1089

    Article  CAS  Google Scholar 

  17. Jiang Y, Li L, Tan X, Liu B, Zhang Y, Li C (2015) miR-210 mediates vagus nerve stimulation-induced antioxidant stress and anti-apoptosis reactions following cerebral ischemia/reperfusion injury in rats. J Neurochem 134:173–181

    Article  CAS  Google Scholar 

  18. Diaz-Canestro C, Merlini M, Bonetti NR, Liberale L, Wust P, Briand-Schumacher S, Klohs J, Costantino S, Miranda M, Schoedon-Geiser G, Kullak-Ublick GA, Akhmedov A, Paneni F, Beer JH, Luscher TF, Camici GG (2018) Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury. Int J Cardiol 260:148–155

    Article  Google Scholar 

  19. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, Tao Z, Xu C, Song J, Ji X, Luo Y (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44:1706–1713

    Article  CAS  Google Scholar 

  20. Tu Y, Wan L, Fan Y, Wang K, Bu L, Huang T, Cheng Z, Shen B (2013) Ischemic postconditioning-mediated miRNA-21 protects against cardiac ischemia/reperfusion injury via PTEN/Akt pathway. PLoS One 8:e75872

    Article  CAS  Google Scholar 

  21. Zeng L, Liu J, Wang Y, Wang L, Weng S, Tang Y, Zheng C, Cheng Q, Chen S, Yang GY (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci (Elite Ed) 3:1265–1272

    Google Scholar 

  22. Hamzei Taj S, Kho W, Riou A, Wiedermann D, Hoehn M (2016) MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials 91:151–165

    Article  CAS  Google Scholar 

  23. Deng X, Zhong Y, Gu L, Shen W, Guo J (2013) MiR-21 involve in ERK-mediated upregulation of MMP9 in the rat hippocampus following cerebral ischemia. Brain Res Bull 94:56–62

    Article  CAS  Google Scholar 

  24. Siegel C, Li J, Liu F, Benashski SE, McCullough LD (2011) miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A 108:11662–11667

    Article  CAS  Google Scholar 

  25. Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX, White RE, Sun X, Giffard RG (2012) miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 45:555–563

    Article  CAS  Google Scholar 

  26. Su WS, Tsai ML, Huang SL, Liu SH, Yang FY (2015) Controllable permeability of blood-brain barrier and reduced brain injury through low-intensity pulsed ultrasound stimulation. Oncotarget 6:42290–42299

    PubMed  PubMed Central  Google Scholar 

  27. Malik R, Dichgans M (2018) Challenges and opportunities in stroke genetics. Cardiovasc Res 114(9):1226–1240

    PubMed  Google Scholar 

  28. Miyazaki T, Kimura Y, Ohata H, Hashimoto T, Shibata K, Hasumi K, Honda K (2011) Distinct effects of tissue-type plasminogen activator and SMTP-7 on cerebrovascular inflammation following thrombolytic reperfusion. Stroke 42:1097–1104

    Article  CAS  Google Scholar 

  29. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Yang, J., Xu, Y. et al. MiR-539 Targets MMP-9 to Regulate the Permeability of Blood–Brain Barrier in Ischemia/Reperfusion Injury of Brain. Neurochem Res 43, 2260–2267 (2018). https://doi.org/10.1007/s11064-018-2646-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2646-0

Keywords

Navigation