Skip to main content
Log in

Preparation, Structure, and Dielectric and Nonlinear Optical Properties of (K0.5Na0.5)NbO3–BaZrO3 Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract—

Single-phase (1 – x)(K0.5Na0.5)NbO3xBaZrO3 (x = 0–0.06) ceramics with new compositions, including those modified with SiO2 and ZnO oxide additions, have been prepared and their crystal structure, microstructure, and dielectric and nonlinear optical properties have been studied. A phase with the perovskite structure and an orthorhombic unit cell has been shown to form in all of the synthesized materials. Partial replacement of cations of the basic composition by cations of the combined additive has been demonstrated to cause an increase in unit-cell volume. The ferroelectric phase transitions in the ceramics have been confirmed by dielectric spectroscopy and laser radiation second harmonic generation measurements. Doping with SiO2 and ZnO oxide additions has been shown to lower the temperatures of the transitions from the orthorhombic ferroelectric phase to a tetragonal ferroelectric one and then to a cubic paraelectric phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Gupta, V., Sharma, M., and Thakur, N., Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: a technical review, J. Intell. Mater. Syst. Struct., 2010, vol. 21, pp. 1227–1243. https://doi.org/10.1177/1045389X10381659

    Article  Google Scholar 

  2. Sodano, H.A., Henry, A., Inman, D.J., and Park, G., Comparison of piezoelectric energy harvesting devices for recharging batteries, J. Intel. Mater. Syst. Struct., 2005, vol. 16, pp. 799–807. https://doi.org/10.1177/1045389X05056681

    Article  Google Scholar 

  3. Sodano, H.A., Park, G., and Inman, D.J., Estimation of electric charge output for piezoelectric energy harvesting, Strain, 2004, vol. 40, pp. 49–58. https://doi.org/10.1111/j.1475-1305.2004.00120.x

    Article  Google Scholar 

  4. Venevtsev, Yu.N., Politova, E.D., and Ivanov, S.A., Segneto- i antisegnetoelektriki semeistva titanata bariya (Ferro- and Antiferroelectrics of the Barium Titanate Family), Moscow: Khimiya, 1985.

  5. Zhang, Sh.J., Eitel, R.E., Randall, C.A., Shrout, T.R., and Alberta, E.F., Manganese-modified BiScO3–PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor, Appl. Phys. Lett., 2005, vol. 86, p. 262904. https://doi.org/10.1063/1.1968419

    Article  CAS  Google Scholar 

  6. Maeder, M.D., Damjanovic, D., and Setter, N., Lead free piezoelectric materials, J. Electroceram., 2004, vol. 13, pp. 385–392. https://doi.org/10.1007/S10832-004-5130-Y

    Article  CAS  Google Scholar 

  7. Saito, Y., Takao, H., Tani, I., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., and Nakamura, M., Lead free piezoceramics, Nature, 2004, vol. 432, pp. 84–87. https://doi.org/10.1038/nature03028

    Article  CAS  PubMed  Google Scholar 

  8. Takenaka, T., Nagata, H., Hiruma, Y., Yoshii, Y., and Matumoto, K., Lead-free piezoelectric ceramics based on perovskite structure, J. Electroceram., 2007, vol. 19, pp. 259–265. https://doi.org/10.1007/s10832-007-9035-4

    Article  CAS  Google Scholar 

  9. Takenaka, T., Nagata, H., and Hiruma, Y., Current developments and prospective of lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 2008, vol. 47, pp. 3787–3801. https://doi.org/10.1143/JJAP.47.3787

    Article  CAS  Google Scholar 

  10. Rödel, J., Jo, W., Seifert, K., Anton, E.M., Granzow, T., and Damjanovic, D., Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., 2009, vol. 92, pp. 1153–1177. https://doi.org/10.1111/j.1551-2916.2009.03061.x

    Article  CAS  Google Scholar 

  11. Panda, P.K., Review: environmental friendly lead-free piezoelectric materials, J. Mater. Sci., 2009, vol. 44, pp. 5049–5062. https://doi.org/10.1007/s10853-009-3643-0

    Article  CAS  Google Scholar 

  12. Zhen, Y.H. and Li, J.F., Normal sintering of (K,Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties, J. Am. Ceram. Soc., 2006, vol. 89, pp. 3669–3675. https://doi.org/10.1111/j.1551-2916.2006.01313.x

    Article  CAS  Google Scholar 

  13. Bernard, J., Bencan, A., Rojac, T., Holc, J., Malic, B., and Kosec, M., Low temperature sintering of (K0.5Na0.5)NbO3 ceramics, J. Am. Ceram. Soc., 2008, vol. 91, pp. 2409–2411. https://doi.org/10.1111/j.1551-2916.2008.02447.x

    Article  CAS  Google Scholar 

  14. Guo, Y., Kakimoto, K.-I., and Ohsato, H., Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics, Appl. Phys. Lett., 2004, vol. 85, pp. 4121–4123. https://doi.org/10.1063/1.1813636

    Article  CAS  Google Scholar 

  15. Ming, B.Q., Wang, J.F., Qi, P., and Zang, G.Z., Piezoelectric properties of (Li, Sb, Ta) modified (Na,K)NbO3 lead-free ceramics, J. Appl. Phys., 2007, vol. 101, p. 054103. https://doi.org/10.1063/1.2436923

    Article  CAS  Google Scholar 

  16. Jiang, X.P., Yang, Q., Yu, Z.D., Hu, F., Chen, C., Tu, N., and Li, Y.M., Microstructure and electrical properties of Li0.5Bi0.5TiO3-modified (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Alloys Compd., 2010, vol. 493, pp. 276–280. https://doi.org/10.1016/j.jallcom.2009.12.079

    Article  CAS  Google Scholar 

  17. Lin, D., Kwok, K.W., and Chan, H.L.W., Dielectric and piezoelectric properties of K0.5Na0.5NbO3–AgSbO3 lead-free ceramics, J. Appl. Phys., 2009, vol. 106, p. 034102. https://doi.org/10.1063/1.3186039

    Article  CAS  Google Scholar 

  18. Sun, X., Chen, J., Yu, R., Sun, C., Liu, G., Xing, X., and Qiao, L., BiScO3 doped (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc., 2009, vol. 92, pp. 130–132. https://doi.org/10.1111/j.1551-2916.2008.02863.x

    Article  CAS  Google Scholar 

  19. Hao, J., Xu, Z., Chua, R., Zhanga, Y., Li, G., and Yin, Q., Effects of MnO2 on phase structure, microstructure and electrical properties of (K0.5Na0.5)0.94Li0.06NbO3 lead-free ceramics, Mater. Chem. Phys., 2009, vol. 118, no. 1, pp. 229–233. https://doi.org/10.1016/j.matchemphys.2009.07.046

    Article  CAS  Google Scholar 

  20. Politova, E.D., Golubko, N.V., Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V., Stefanovich, S.Yu., Kiselev, D.A., Kislyuk, A.M., and Panda, P.K., Processing and characterization of lead-free ceramics on the base of sodium–potassium niobate, J. Adv. Dielectr., 2018, vol. 8, no. 1, p. 1850004. https://doi.org/10.1142/S2010135X18500042

    Article  CAS  Google Scholar 

  21. Politova, E.D., Golubko, N.V., Kaleva, G.M., Mosunov, A.V., Sadovskaya, N.V., Stefanovich, S.Yu., Kiselev, D.A., Kislyuk, A.M., Chichkov, M.V., and Panda, P.K., Structure, ferroelectric and piezoelectric properties of KNN-based perovskite ceramics, Ferroelectrics, 2019, vol. 538 P, pp. 45–51. https://doi.org/10.1080/00150193.2019.1569984

  22. Kim, J.-W., Ryu, J., Hahn, B.-D., Choi, J.-J., Yoon, W.-H., Ahn, C.-W., Choi, J.-H., and Park, D.-S., Physical properties of A(Cu1/3Nb2/3)O3 (A = Ba, Sr, Ca)-substituted BaTiO3 system grown by using aerosol deposition, J. Korean Phys. Soc., 2013, vol. 63, no. 12, pp. 2296–2300. https://doi.org/10.3938/jkps.63.2296

    Article  CAS  Google Scholar 

  23. Politova, E.D., Kaleva, G.M., Mosunov, A.V., Sadovskaya N.V., Il’ina, T.S., Kiselev, D.A., and Shvartsman, V.V., Synthesis and properties of modified potassium-sodium niobate ceramics, Russ. J. Inorg. Chem., 2021, vol. 66, no. 8, pp. 1257–1262. https://doi.org/10.1134/S0036023621080234

    Article  CAS  Google Scholar 

  24. Kaleva, G.M., Politova, E.D., Mosunov, A.V., and Stefanovich, S.Yu., Phase formation, structure, and dielectric properties of modified potassium sodium niobate ceramics, Inorg. Mater., 2020, vol. 56, no. 10, pp. 1072–1078. https://doi.org/10.1134/S0020168520100076

    Article  CAS  Google Scholar 

  25. Louër, D., Weigel, D., and Louboutin, R., Méthode directe de correction des profils de raies de diffraction des rayons X. I. Méthode numérique de déconvolution, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1969, vol. 25, pp. 335–338. https://doi.org/10.1107/s0567739469000556

    Article  Google Scholar 

  26. Louboutin, R. and Louër, D., Méthode directe de correction des profils de raies de diffraction des rayons X. III. Sur la recherche de la solution optimale lors de la déconvolution, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1972, vol. 28, pp. 396–400. https://doi.org/10.1107/S056773947200107X

    Article  Google Scholar 

  27. Le Bail, A. and Louër, D., Smoothing and validity of crystallite-size distributions from X-ray line-profile analysis, J. Appl. Crystallogr., 1978, vol. 11, pp. 50–55. https://doi.org/10.1107/S0021889878012662

    Article  CAS  Google Scholar 

  28. Zhurov, V.V. and Ivanov, S.A., PROFIT computer program for processing powder diffraction data on an IBM PC with a graphic user interface, Crystallogr. Rep., 1997, vol. 42, pp. 202–206.

    Google Scholar 

  29. Maltoni, P., Sarkar, T., Varvaro, G., Barucca, G., Ivanov, S.A., Peddis, D., and Mathieu, R., Towards bi-magnetic nanocomposites as permanent magnets through the optimization of the synthesis and magnetic properties of SrFe12O19 nanocrystallites, J. Phys. D: Appl. Phys., 2021, vol. 54, pp. 124004–124017.

    Article  CAS  Google Scholar 

  30. Maltoni, P., Ivanov, S.A., Barucca, G., Varvaro, G., Peddis, D., and Mathieu, R., Complex correlations between microstructure and magnetic behavior in SrFe12O19 hexaferrite nanoparticles, Sci. Rep., 2021, vol. 11, pp. 23307–23316. https://doi.org/10.1038/s41598-021-02782-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kurtz, S.K. and Perry, T.T., A powder technique for the evaluation of nonlinear optical materials, J. Appl. Phys., 1968, vol. 39, no. 8, pp. 3798–3813. https://doi.org/10.1109/JQE.1968.1075108

    Article  CAS  Google Scholar 

  32. Stefanovich, S.Yu., Second harmonic in reflection in material science of ferroelectrics, Eur. Conf. on Lasers and Elecrto-Optics (CLEO-Europe'94), Amsterdam, 1994, pp. 249–250.

  33. Jerphagnon, J., Invariants of the third-rank Cartesian tensor: optical nonlinear susceptibilities, Phys. Rev. B: Condens. Matter Mater. Phys., 1970, vol. 2, no. 4, pp. 1091–1098. https://doi.org/10.1103/PhysRevB.2.1091

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 21-53-12005) and the Russian Federation Ministry of Science and Higher Education (state research targets for the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (theme registration no. 122040500071-0: A New Generation of Nanostructured Systems with Unique Functional Properties) and for the Crystallography and Photonics Federal Scientific Research Center, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kaleva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleva, G.M., Politova, E.D., Ivanov, S.A. et al. Preparation, Structure, and Dielectric and Nonlinear Optical Properties of (K0.5Na0.5)NbO3–BaZrO3 Ceramics. Inorg Mater 59, 202–209 (2023). https://doi.org/10.1134/S0020168523020085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523020085

Keywords:

Navigation