Skip to main content
Log in

Mineral Signatures and Trace and Rare Earth Elements Constraints on the Sources of the Doğanşehir Bauxite Deposit (Malatya-Turkey)

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

In the Eastern Tauride, one of Turkey’s main tectonic belts, the Permo–Triassic Malatya Metamorphics units crop out. Doğanşehir bauxites occur in lenses and are massive in the carbonates of Malatya Metamorphics. The ore paragenesis consists of diaspore, hematite, gibbsite, anatase and zeolite minerals, indicating that the deposit was formed in vadose environments. The results of the geochemical analysis show that Ni, Be, Zr, Cr, Nb, Th and Ta trace elements normalised to the Upper Continental Crust are enriched, while Co, Cu, Rb, Sr, Ba, Mo, Sn and Pb elements are depleted during bauxitization. In bauxite samples, ΣREE is 664–1047 ppm, ∑LREE is 547–948 ppm, ∑HREE is 88–112 ppm. Compared with the Tauride-Anatolide region bauxites in Turkey and some important bauxite deposits worldwide, the Doğanşehir bauxites have been geochemically characterised by high ∑REE content. The Ce/Ce* index in the studied bauxite ores, with values ranging between 0.88 and 1.35, reflects the occurrence of weak negative and positive anomalies during chemical weathering processes. The weathered material would display these Ce anomalies due to the influence of oxidation on reduction processes. The La/Y ratios in samples of Doğanşehir bauxites indicate that basic conditions were dominated during bauxitization. The bivariate diagrams of log Cr vs log Ni and the triangular diagrams of Zr–Cr–Ga revealed that the bauxite that formed in the region had ultrabasic and basic rocks source. Based on the mineralogical and geochemical data, the sources of Doğanşehir bauxites are from basic to ultrabasic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. Abedini and A. A.Calagari, “REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran,” Turk. J. Earth Sci. 23, 513–532 (2014).

    Article  Google Scholar 

  2. A. Abedini, A. A. Calagari, and K. Mikaeili, “Geochemical characteristics of laterites: the Ailibaltalu deposit, Iran,” Bull. MTA, 148, 69–84 (2014).

    Google Scholar 

  3. A. Abedini, A. A. Calagari, and M. Rezaei Azizi, “The tetrad-effect in rare earth elements distribution patterns of titanium-rich bauxites: evidence from the Kanigorgeh deposit, NW Iran,” J. Geochem. Explor. 186, 129–142 (2018).

    Article  Google Scholar 

  4. A. Abedini, M. Khosravi, and H. G. Dill, Rare earth element geochemical characteristics of the late Permian Badamlu karst bauxite deposit, NW Iran,” J. Afr. Earth Sci. 172, 103974 (2020).

    Article  Google Scholar 

  5. A. Abedini, G. Mongelli, and M. Khosravi, “Geochemistry of the early Jurassic Soleiman Kandi karst bauxite deposit, Irano–Himalayan belt, NW Iran: Constraints on bauxite genesis and the distribution of critical raw materials,” J. Geochem. Explor. 241, 107056 (2022).

    Article  Google Scholar 

  6. İ. Açıkalın, Körtigöre-Doğansehir Alüminyum Prospeksiyonu. Proje No.5/3.11 (1967).

  7. G. J. J. Aleva, Laterites: Concepts, Geology, Morphology and Chemistry (International Soil Reference and Information Centre, 1994).

    Google Scholar 

  8. S. A. Al-Khirbash, K. Semhi, L. Richard, S. Nasir, et al., “Rare earth element mobility during laterization of mafic rocks of the Oman ophiolite,” Arab. J. Geosci. 7, 5443–5454 (2014). https://doi.org/10.1007/s12517-013-1189-6

    Article  Google Scholar 

  9. H. J. Asutay and M. Turan, Doğu Toroslar Keban-Baskil (Elazığ) Dolaylarının Jeoloji. MTA Rapor Arşivi, 1986.

  10. M. S. Aydoğan and M. Moazzen, “Origin and metamorphism of corundum-rich metabauxites at Mt. Ismail in the Southern Menderes Massif, SW Turkey,” Resource Geol. 62 (3), 243–262 (2012).

    Article  Google Scholar 

  11. K. S. Balasubramaniam, M. Surendra, and T. V. Ravikumar, “Genesis of certain bauxite profiles from India,” Chem. Geol. 60, 227–235 (1987).

    Article  Google Scholar 

  12. G. Bárdossy, Karst Bauxites (Elsevier Scientific, Amsterdam, 1982).

    Google Scholar 

  13. G. Bárdossy, “Carboniferous to Jurassic bauxite deposits as paleoclimatic and paleogeographic indicators,”Can. Soc. Petrol. Geol., Mem. 17, 283–293 (1994).

    Google Scholar 

  14. G. Bárdossy and G. J. J. Aleva, Lateritic Bauxites (Elsevier, Amsterdam, 1990).

    Google Scholar 

  15. G. Bárdossy and P. J. Combes, “Karst bauxites: interfingering of deposition and palaeoweathering,” In: Paleoweathering, paleosurfaces and Related Continental Deposits, Ed. by M. Thiry and R. Simon-Coincon, Int. Ass. Sedimentol. Spec. 27, 189–206 (1999).

  16. A. Berger, E. Janots, E. Gnos, et al., “Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar,” Appl. Geochem. 41, 218–228 (2014).

    Article  Google Scholar 

  17. M. Birinci and R. Gök, “Characterization and flotation of low-grade boehmitic bauxite ore from Seydişehir (Konya, Turkey),” Minerals Eng. 161, 106714 (2021).

    Article  Google Scholar 

  18. M. Boni, G. Rollinson, N. Mondillo, et al., “Quantitative mineralogical characterisation of karst bauxite deposits in the southern Apennines, Italy,” Econ. Geol. 108, pp.813–833 (2013).

    Article  Google Scholar 

  19. Y. Bozkır, Çarıksaraylar ile Kozluçay (Sarkikaraağaç-Isparta) Arasındaki Boksitlerin NTE’leri ve Oluşum Şartları, MSc Thesis (Selçuk University, Konya, 2007) [in Turkish].

  20. C. R. B. Borra, Y. Blanpain, K. Pontikes, et al., “Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review,” J. Sustain. Metall. 2, 365–386 (2016).

    Article  Google Scholar 

  21. J. J. Braun, J. Viers, B. Dupre, et al., “Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions,” Geochim. Cosmochim. Acta 62, 273–299 (1998).

    Article  Google Scholar 

  22. J. J. Braun, M. Pagel, J. P. Muller, et al., “Ce anomalies in lateritic profiles,” Geochim. Cosmochim. Acta 54, 781–795 (1990).

    Article  Google Scholar 

  23. B. Boulange and F. Colin, “Rare earth element mobility during conversion of nepheline syenite into lateritic bauxite at Passa Quatro, Minais Gerais, Brazil,” Appl. Geochem. 9, 701–711 (1994).

    Article  Google Scholar 

  24. A. A. Calagari and A. Abedini, “Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, West-Azarbaidjan, Iran,” J. Geochem. Explor. 94, 1–18 (2007).

    Article  Google Scholar 

  25. P. J. Combes, “Typologie, cadre ge’odynamique et gene`se des bauxites franc¸aises,” Geodinamica Acta 4, 91–109 (1990).

    Article  Google Scholar 

  26. P. J. Combes, G. Oggiano, and I. Temussi, “Geodynamique des bauxites sardes, typologie, ge’nese et controle paleotectonique,” Comptes Rendus de l’Acade’mie des Sciences Se`rie II 316, 403–409 (1993).

    Google Scholar 

  27. S. J. Compton, A. R. White, and M. Smith, “Rare earth element behavior in soils and salt pan sediments of a semi-arid granitic terrain in the Western Cape, South Africa,” Chem. Geol. 201, 239–255 (2003).

    Article  Google Scholar 

  28. K. C. Condie, D. Lee, and G. L. Farmer, “Tectonic setting and provenance of the Neoproterozoic Uinta Mountain and Big Vottonwood groups, northern Utah: Constraints from geochemistry, Nd isotopes, and detrital modes,” Sediment. Geol. 141, 43–464 (2001).

    Google Scholar 

  29. J. Crinci, and I. Jurkowic, “Rare earth elements in Triassic bauxites of Croatia Yugoslavia,” Travaux 19, 239–248 (1990).

    Google Scholar 

  30. R. L. Cullers and J. Graf, “Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis,” In: Rare Earth Element Geochemistry, Ed. by P. Henderson, (Elsevier, Amsterdam, 1983), pp. 275–312.

    Google Scholar 

  31. B. D’Argenio, and A. Mindszenty, “Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities,” Eclogae Geol Helv. 88, 453–499 (1995).

    Google Scholar 

  32. M. A. Ertürk, M. Beyarslan, S. L. Chung, and T. H. Lin, “Eocene magmatism (Maden Complex) in the Southeast Anatolian Orogenic Belt: Magma genesis and tectonic implications,” Geosci. Front. 9, 1829–1847 (2018).

    Article  Google Scholar 

  33. M. A. Ertürk, H. Kara, and A. Sar, “Doğanşehir-Eskiköy (Malatya) Bölgesindeki Neojen Yaşlı (?) Volkanik Kayaçların Petrografik, Jeokimyasal ve Petrolojik Özellikleri,” Düzce Üniv. Bil.ve Tek. Dergisi, 9 (4), 1294–1309 (2021).

    Google Scholar 

  34. M. A. Ertürk, A. Sar, and M. E. Rizeli, “Petrology, zircon U-Pb geochronology and tectonic implications of the A1-type intrusions: Keban region, eastern Turkey,” Geochemistry 82 (3), 125882 (2022).

    Article  Google Scholar 

  35. P. Ferenczi, Iron Ore, Manganese and Bauxite Deposits of the Northern Territory (Department of Business, Industry and Resource Development, 2001).

    Google Scholar 

  36. A. J. Fleet, “Aqueous and sedimentary geochemistry of the rare earth elements,” In: Rare Earth Element Geochemistry, Ed. by P. Henderson (Elsevier, 1984), pp. 343–373.

  37. P. N. Gamaletsos, A. Godelitsas, T. Kasama, et al., “Nano-mineralogy and -geochemistry of high-grade diasporic karst-type bauxite from Parnassos–Ghiona mines, Greece,” Ore Geol. Rev. 84, 228–244 (2017).

    Article  Google Scholar 

  38. S. C. Genc, E. Yiğitbas, and Y. Yılmaz, “The geology of the Berit Metaophiolite,” A. Suat Erk Geology Symposium, Expanded Abstracts (1993), pp. 37–52 [In Turkish].

  39. A. M. Gözübol and M. Önal, “Çat Baraji isale tünelinin mühendislik jeolojisi ve kaya mekanigi incelemesi ve Malatya-Çelikhan yöresinin jeolojisi, Tübitak,” Tbag- 647 (1986), pp.120.

    Google Scholar 

  40. J. Gu, Z. Huang, H. Fan, et al., “Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan-Zheng’an-Daozhenarea, Northern Guizhou Province, China,” J. Geochem. Explor. 130, 44–59 (2013).

    Article  Google Scholar 

  41. I. Gündogan, “Meta-bauxite deposit in the Tavşanlı Zone, NW Turkey: A new locality for gem-quality diaspore formation,” J. Asian Earth Sci. 8, 100114 (2022).

    Google Scholar 

  42. N. Hanilçi, “Geological and geochemical evolution of the Bolkardağı bauxite deposits, Karaman, Turkey: transformation from shale to bauxite,” J. Geochem. Explor. 133, 118–137 (2013).

    Article  Google Scholar 

  43. N. Hanilçi, “Bauxite deposits of Turkey,” Mineral Resources of Turkey, Ed. by F. Pirajno, T. Ünlü, C. Donmez, and M. Sahin (Springer, Cham, 2019), Vol. 16, pp. 681–730.

    Google Scholar 

  44. M. Hatipoğlu, N. Türk, S. C. Chamberlain, and A. M. Akgün, “Metabauxite horizons containing remobilised-origin gem diaspore and related mineralisation, Milas-Muğla province, SW Turkey,” J. Asian Earth Sci. 39 (5), 359–370 (2010).

    Article  Google Scholar 

  45. R. Herrington, “Road map to mineral supply,” Nat. Geosci. 6, 892–894 (2013).

    Article  Google Scholar 

  46. A. W. Hoffman and K. P. Jochum, “Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project,” J. Geophys. Res. 101, 11831–11839 (1996).

    Article  Google Scholar 

  47. T. Karaman, N. Poyraz, B. Bakırhan, et al., Malatya-Doğanşehir-Çelikhan Dolayının Jeolojisi, MTA Rapor, No: 9587. 57 (1993).

    Google Scholar 

  48. F. Karaoğlan, “The Petrography and the geochemistry of the tectono-magmatic units in Güneydoğu Beğre (Doğanşehir-Malatya) and surroundings,” MSc Thesis (Çukurova University, 2005). [in Turkish].

  49. M. M. Karadağ, S. Küpeli, F. Arık, et al., “Rare earth element (REE) geochemistry and genetic implications of the Mortas¸ bauxite deposit (Seydişehir/Konya-Southern Turkey),” Chem. Erde-Geochem. 69, 143–159 (2009).

    Article  Google Scholar 

  50. F. Karaoğlan, F. Koller, Thöni, et al., U-Pb and Sm-Nd Geochronology of the Kizildağ (Hatay, Turkey) ophiolite: implications for the timing and duration of suprasubduction zone type oceanic crust formation in southern Neotethys,” V. Jeokimya Sempozyumu (Denizli, 2012), p. 1.

    Google Scholar 

  51. F. Karaoğlan, O. Parlak, A. Robertson, et al., “Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neo-Tethyan subduction processes (Doğanşehir area, SE Anatolia),” Geol Soc Lond Spec Publ. 372, 249–272 (2013).

    Article  Google Scholar 

  52. F. Karaoğlan, O. Parlak, E. Hejl, et al., “The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U–Pb, Ar-Ar and fission track chronology,” Gondwana Res. 33, pp.190–208 (2016).

    Article  Google Scholar 

  53. İ. Kaydu Akbudak, M. Gürbüz, Z. Başıbüyük, et al., “Mineralogical and gemological characteristics of metaophiolite hosted corundum (Malatya-Türkiye),” Sakarya Univ. J. Sci. 25 (2), 288–296 (2021).

    Article  Google Scholar 

  54. İ. Ketin, “Tectonic units of Anatolia,” Maden Tetkik ve Arama Bull. 66, 23–34 (1967).

    Google Scholar 

  55. C. Klauber, M. Grafe, and G. Power, “Bauxite residue issues: II. Options for residue utilisation,” Hydrometallurgy 108, 11–32 (2011).

    Article  Google Scholar 

  56. J. T. Kloprogge, H. D. Ruan, and R. L. Frost, “Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore,” J. Mater. Sci. 37, 1121–1129 (2002).

    Article  Google Scholar 

  57. E. Kipman, Keban’ın Jeolojisi ve Volkanitlerinin Petrolojisi, Ph. D. Thesis (İst. Univ. Fen Fak., İstanbul, 1976).

  58. E. Kipman, “Kebanın jeolojisi ve Keban şaryajı”, Istanbul Üniversitesi Yerbilimleri Dergisi (İstanbul, 1981), pp. 75–81.

    Google Scholar 

  59. Ş. Koç and M. A. Değer, “Payas (Hatay) bölgesi boksitli demir cevherleşmelerinin oluşumu,” MTA Dergisi 113, 113–126 (1991).

    Google Scholar 

  60. H. Kozlu, H. Prichard, F. Melcher, et al., “Platinum group element (PGE) mineralisation and chromite geochemistry in the Berit ophiolite (Elbistan/Kahramanmaraş), SE Turkey,” Ore Geol. Rev. 60, 97–111 (2014).

    Article  Google Scholar 

  61. P. Laville, “La formation bauxitique provenc¸ale (France). Se’quence des facie`s chimiques et pale’omorphologie cre’tace`e,” Chronique de la Recherche Minie`re, 461, 51–68 (1981).

    Google Scholar 

  62. M. Laskou and G. Andreou, “Rare earth elements distribution and REE-minerals from the Parnassos–Ghiona bauxite deposits, Greece,” Mineral Exploration and Sustainable Development, 7th Biennial SGA Meeting. Athens, Ed. by D. Eliopoulos, (Mill Press, Rotterdam, 2003), pp. 89–92.

  63. V. N. Lavrenchuk, A. V. Stryapkov, and E. N. Kokovin, Scandium in Bauxite and Clay (GUP SO Kamensk-Uralsk Printshop, 2004)

    Google Scholar 

  64. S. Liaghat, M. Hosseini, and A. Zarasvandi, “Determination of the origin and mass change geochemistry during bauxition process at the Hangam deposite, SW Iran,” Geochem. J. 37, 627–637 (2003).

    Article  Google Scholar 

  65. X. F. Liu, Q. F. Wang, J. Deng, et al., “Mineralogical and geochemical investigations of the Dajia Salento-type bauxite deposits, Western Guangxi, China,” J. Geochem. Explor. 105, 137–152 (2010).

    Article  Google Scholar 

  66. X. F. Liu, Q. F. Wang, Y. W. Feng, et al., “Genesis of the Guangou karstic bauxite deposit in western Henan, China,” Ore Geol. Rev. 55, 162–175 (2013).

    Article  Google Scholar 

  67. X. Liu, Q. Wang, Q. Zhang, et al., “Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions,” Ore Geol. Rev. 75, 100–115 (2016).

    Article  Google Scholar 

  68. X. Liu, Q. Wang, Q. Zhang, et al., “Transformation from Permian to Quaternary bauxite in southwestern South China Block driven by superimposed orogeny: A case study from Sanhe ore deposit,” Ore Geol. Rev. 90, 998–1017 (2017).

    Article  Google Scholar 

  69. X. Liu, Q. Wang, L. Zhao, et al., “Metallogeny of the largescale Carboniferous karstic bauxite in the Sanmenxia area, southern part of the North China Craton, China,” Chem. Geol. 556, 1–15 (2020).

    Article  Google Scholar 

  70. W. H. MacLean, and P. Kranidiotis, “Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec,” Econ. Geol. 82, 951–962 (1987).

    Article  Google Scholar 

  71. W. H. Maclean, “Mass change calculations in altered rock series,” Mineral Deposita 25, 44–49 (1990).

    Article  Google Scholar 

  72. W. H. MacLean and T. J. Barrett, “Lithogeochemical techniques using immobile elements,” J. Geochem. Explor. 48, 109–133 (1993).

    Article  Google Scholar 

  73. W. H. MacLean, F. F. Bonavia, and G. Sanna, “Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia,” Miner. Deposita 32, 607–616 (1997).

    Article  Google Scholar 

  74. Z. J. Maksimović and G. Pantó, “Contribution to the geochemistry of the rare earth elements in the karst-bauxites deposits of Yugoslavia and Greece,” Geoderma 51, 93–109 (1991).

    Article  Google Scholar 

  75. Z. Maksimović and G. Pantó, “Authigenic rare ́ earth minerals in karst-bauxites and karstic nickel deposits,” in: Rare Earth Minerals, Chemistry, Origin and Ore Deposits, Ed. by F. A. Jones, F. Wall and C. T. Williams (Springer Science & Business Media, 1996), Vol. 7, pp. 257–259.

    Google Scholar 

  76. P. Mameli, G. Mongelli, G. Oggiano, and E. Dinelli, “Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity,” Int. J. Earth Sci. 96 (5), 887–902 (2007).

    Article  Google Scholar 

  77. S. M. McLennan, “Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes,” Geochemistry and Mineralogy of Rare Earth Elements, Rev. Mineral. 21, 169–200 (1989).

    Google Scholar 

  78. S. M. McLennan, D. K. Hemming, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance and tectonics,” Geol. Soc. Am. Spec. Pap. 284, 21–40 (1993).

    Google Scholar 

  79. R. R. Meshram and K. R. Randive, “Geochemical study of laterites of the Jamnagar District, Gujarat, India: Implications on parent rock, mineralogy and tectonics,” J. Asian Earth Sci. 42, 1271–1287 (2011).

    Article  Google Scholar 

  80. F. M. Meyer, “Availability of bauxite reserves,” Nat. Resour. Res. 13, 161–172 (2004).

    Article  Google Scholar 

  81. G. Mongelli, “Ce anomalies in the textural components of upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy),” Chem. Geol. 140, 69–79 (1997).

    Article  Google Scholar 

  82. G. Mongelli, M. Boni, R. Buccione, and R. Sinisi, “Geochemistry of the Apulian karst bauxites (southern Italy): chemical fractionation and parental affinities,” Ore Geol. Rev. 63, 9–21 (2014).

    Article  Google Scholar 

  83. N. Mondillo, G. Balassone, M. Boni, and G. Rollinson, “Karst bauxites in the Campania Apennines (southern Italy): A new approach,” Period. Mineral. 80, 407–432 (2011).

    Google Scholar 

  84. N. Mondillo, R. Herrington, and M. Boni, “Bauxites,” In: Encyclopedia of Geology, 2nd Edition (Elsevier, 2021), pp. 694–708.

  85. L. E. Mordberg, “Geochemical evolution of a Devonian diaspore-crandallite-svanbergite-bearing weathering profile in the Middle Timan, Russia,” J. Geochem. Explor. 66, 353–361 (1999).

    Article  Google Scholar 

  86. L. E. Mordberg, C. J. Stanley, and K. Germann, “Rare earth element anomalies in crandallite group minerals from the Schugorsk bauxite deposit, Timan, Russia,” Europ. J. Mineral. 12 (6), 1229–1243 (2000).

    Article  Google Scholar 

  87. MTA, “1/500.000 ölçekli Türkiye Jeoloji Haritası” (Maden Tetkik ve Arama Genel Müdürlüğü Ankara, 2002).

  88. G. W. A. Nyakairu, C. Koeberl, and H. Kurzweil, “The Buwambo kaolin deposit in Central Uganda: Mineralogical and chemical composition,” Geochem. J. 35, 245–256 (2001).

    Article  Google Scholar 

  89. N. V. Nguyen, A. Iizuka, E. Shibata, and T. Nakamura, “Study of adsorption behavior of a new synthesised resin containing glycol amic acid group for separation of scandium from aqueous solutions,” Hydrometallurgy 165, 51–56 (2016).

    Article  Google Scholar 

  90. A. Önal, Polat-Beğre (Doğanşehir) Çevresindeki Magmatik Kayaçların Petrografik ve Petrolojik Özellikleri, Doktora Tezi (Fırat Üniv. Fen Bilim Enst. Elazığ, 1995).

    Google Scholar 

  91. A. Önal, and M. Beyarslan, “Doğanşehir (Malatya) civarındaki ofiyolitik kayaçların jeolojik ve petrografik özellikleri,” Selçuk Üniv Müh-Mimarlık Fak Dergisi 16 (2), 66–75 (2001).

    Google Scholar 

  92. Ö. Özer, “Sütleğen Bölgesi (Kaş, Antalya) boksit yataklarının jenezi ve ekonomik özellikleri,” Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı Yüksek Lisans Tezi. Temmuz 2020 (Antalya, 2020), p. 125.

  93. Ö. Özer and M. G. Yalçın, “Correlation of chemical contents of Sutlegen (Antalya) bauxites and regression analysis,” AIP Conference Proceedings 2293 (1), 180008–180012 (2020).

    Article  Google Scholar 

  94. Ö. Özer and M. G. Yalçın, “Geochemical characterisation of the Sutlegen bauxite deposit, SW Antalya,” Min. Mineral. Dep. 15 (3), 108–121 (2021).

    Article  Google Scholar 

  95. N. Özgül, “Torosların bazı temel jeoloji özellikleri,” Turk. Jeol. Kurumu Bul. 19, 65–78 (1976).

    Google Scholar 

  96. N. Özlü, “Trace element contents of karst bauxites and their parent rocks in the Mediterranean belt,” Miner. Deposita 18, 469–476 (1983).

    Article  Google Scholar 

  97. H. Öztürk, J. R. Hein, and N. Hanilçi, “Genesis of the Doğankuzu and Mortaş bauxite deposits, Taurides, Turkey separation of Al, Fe and Mn and implications for passive margin metallogeny,” Econ. Geol. 97, 1063–1077 (2002).

    Article  Google Scholar 

  98. H. Öztürk, N. Hanilçi, S. Altuncu, and C. Kasapçı, “Rare earth element (REE) resources of Turkey: an overview of their characteristics and origin,” Bull. Min. Res. Exp. 159, 129–143 (2019).

    Google Scholar 

  99. H. Öztürk, N. Hanilçi, Z. Cansu, and C. Kasapçı, “Formation of Ti-rich bauxite from alkali basalt in continental margin carbonates, Payas region, SE Turkey: implications for sea level change in the Upper Cretaceous,” Turk. J. Earth Sci. 30, 116–141 (2021).

    Article  Google Scholar 

  100. A. Panahi, G. M. Young, and R. H. Rainbird, “Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada,” Geochim. Cosmochim. Acta 64, 2199–2220 (2000).

    Article  Google Scholar 

  101. M. Pajović, “Genesis and genetic types of karst bauxites,” Iran. J. Earth Sci. 1, 44–56 (2009).

    Google Scholar 

  102. O. Parlak, T. Rizaoğlu, U. Bağci, F. Karaoğlan, and V. Höck, “Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey,” Tectonophysics 473, 173–187 (2009).

    Article  Google Scholar 

  103. S. H. Patterson, H. F. Kurtz, J. C. Olson, and C. L. Neeley, “World bauxite resources,” U.S. Geol. Surv. Prof. Pap., No. 1076-B (1986).

    Book  Google Scholar 

  104. D. Perinçek, “GD Anadolu allokton birimlerinin birbirleri ile ilişkileri ve bunların jeolojik evrimdeki yeri,” Türkiye Jeoloji Kurultayı Bildiri Özleri (1978), pp. 117–118.

    Google Scholar 

  105. D. Perinçek and H. Kozlu, “Stratigraphy and structural relations of the units in the Afşin-Elbistan-Doğanşehir region (Eastern Taurus), in the Geology of Taurus Belt,” Proceeding International Symposium, MTA Ankara, Turkey (Amkara, 1984), pp. 181–198.

  106. F. J. Peryea and J. A. Kittrick, “Relative solubility of corundumm, gibbsite, boehmite, and diaspore at standard state conditions,” Clays Clay Miner. 36, 391–396 (1988).

    Article  Google Scholar 

  107. F. Putzolu, A. P. Papa, N. Mondillo, et al., “Geochemical characterisation of bauxite deposits from the Abruzzi Mining District (Italy),” Minerals 8, 1–24 (2018).

    Article  Google Scholar 

  108. G. J. Retallack, “Lateritization and bauxitization events,” Econ. Geol. 105 (3), 655–667 (2010).

    Article  Google Scholar 

  109. N. Reinhardt, J. A. Proenza, C. Villanova-de-Benavent, et al., “Geochemistry and Mineralogy of Rare Earth Elements (REE) in Bauxitic Ores of the Catalan Coastal Range, NE Spain,” Minerals 8, 562–586 (2018).

    Article  Google Scholar 

  110. A. Sar, M. A. Ertürk, and M. E. Rizeli, “Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern U-Pb geochronology and geochemical and Sr-Nd isotopic analyses,” Lithos 350–351, 105263 (2019).

    Article  Google Scholar 

  111. W. Schellmann, “A new definition of laterite,” In: Lateritisation Processes, IGCP-127, Geol. Surv. India, Mem. 120, 1–7 (1986).

  112. R. F. Schulte and N. K. Foley, “Compilation of gallium rsource data for bauxite deposits,” US Geol. Surv., No. 1272 (2013)

  113. E. Schroll and D. Sauer, “Beitrag zur geochemie von titan, chrom, nickel, cobalt, vanadium und molybdin in bauxitischen Gesteinen und das problem der stofflichen herkunft des aluminiums,” Travaux du ICSOBA 5, 83–96 (1968).

    Google Scholar 

  114. G. J. Simandl, “Geology and market-dependent significance of rare earth element resources,” Miner. Deposita 49, 889–904 (2014).

    Article  Google Scholar 

  115. R. Sinisi, “Mineralogical and geochemical features of Cretaceous bauxite from San Giovanni Rotondo (Apulia, Southern Italy): A provenance tool,” Minerals 8, 567 (2018).

    Article  Google Scholar 

  116. R. Sinisi, G. Mongelli, P. Mameli, and G. Oggiano, “Did the Variscan relief influence the Permian climate of Mesoeurope? Insights from geochemical and mineralogical proxies from Sardinia (Italy),” Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 132–154 (2014).

    Article  Google Scholar 

  117. S. R. Taylor and S. M. McLennan, The Continental Crust: its Composition and Evolution (Blackwell, Oxford, 1985).

    Google Scholar 

  118. S. Temur, “A geochemical approach to parent rocks of the Maşatdaği diasporic bauxite, Alanya, Antalya, southern Turkey,” Geochem. Int. 44, 941–952 (2005).

    Article  Google Scholar 

  119. S. Temur and G. Kansun, “Geology and petrography of the Masatdagi diasporic bauxites, Alanya, Antalya, Turkey,” J. Asian Earth Sci. 27, 512–522 (2006).

    Article  Google Scholar 

  120. J. Vind, A. Malfliet, C. Bonomi, et al., “Modes of occurrences of scandium in Greek bauxite and bauxite residue,” Miner. Eng. 123, 35–48 (2018).

    Article  Google Scholar 

  121. Q. F. Wang, J. Deng, X. F. Liu, et al., “Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China,” J. Asian Earth Sci. 39, 701–712 (2010).

    Article  Google Scholar 

  122. X. Wang, Y. Jiao, Y. Du, et al., “REE mobility and Ce anomaly in bauxite deposit of WZD area, Northern Guizhou, China,” J. Geochem Explor. 133, 103–117 (2013).

    Article  Google Scholar 

  123. X. Wei, H. Ji, S. Wang, et al., “The formation of representative lateritic weathering covers in south-central Guangxi (southern China),” Catena 118, 55–72 (2014).

    Article  Google Scholar 

  124. H. P. Wu, J. H. Yang, and S. H. Jiang, “Eu and Ce anomaly and REE patterns in cap carbonates of Neoproterozoic Duoshantou Formation in South China,” Goldschmidt Conference, 2017 (Abstracts), p. 4300.

  125. S. Xu and S. Li, “Review of the extractive metallurgy of scandium in China (1978–1991),” Hydrometallurgy 42, 337–343 (1996).

    Article  Google Scholar 

  126. M. G. Yalçın and S. İlhan, “Major and trace element geochemistry of terra rossa soil in the Kucukkoras Region, Karaman, Turkey,” Geochem Int. 46, 1038–1054 (2008).

    Article  Google Scholar 

  127. M. G. Yalçın and S. İlhan, “Major and trace element geochemistry of bauxites of Ayranci, Karaman, Central Bolkardag, Turkey,” Asian J. Chem. 25 (5), 2893–2904 (2013).

    Article  Google Scholar 

  128. S. Yang, Q. Wang, J. Deng, et al., “Genesis of karst bauxite-bearing sequences in Baofeng, Henan (China), and the distribution of critical metals,” Ore Geol. Rev. 115, 103161 (2019).

    Article  Google Scholar 

  129. N. Yapıcı, H. Güneyli, and H. Karakılçık, “Fakılar Boksit Cevher Özellikleri ve Potansiyeline ait İlk Bulgular (Çamlıyayla/Mersin),” Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 30 (2), 55–64 (2015).

  130. E. Yazgan, “A geotraverse between the Arabian Platform and the Munzur nappes, 17 th Int. Symp. On Geology of the Taurus belt. Guide Book for Excursion (MTA, Ankara, 1983), pp. 26–29.

  131. Y. Yılmaz, “New evidence and model on the evolution of the southeast Anatolian orogen,” Geol. Soc. Am. Bull. 105, 251–271 (1993).

    Article  Google Scholar 

  132. Y. Yılmaz, E. Yiğitbas, and S. C. Genc, “Ophiolitic and metamorphic assemblages of Southeast Anatolia and their significance in the geological evolution of the orogenic belt,” Tectonics 12, 1280–1297 (1993).

    Article  Google Scholar 

  133. W. Yu, T. J. Algeo, Y. Du, Q. Zhang, and Y. Liang, “Mixed volcanogenic–lithogenic sources for Permian bauxite deposits in southwestern Youjiang Basin, South China, and their metallogenic significance,” Sediment. Geol. 341, 276–288 (2016).

    Article  Google Scholar 

  134. H. Zamanian, F. Ahmadinejad, and A. Zarasvandi, “Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran,” Chem. Erde Geochem. 76, 13–37 (2015).

    Article  Google Scholar 

  135. A. Zarasvandi, H. Zamanian, and E. Hejazi, “mmobile elements and mass changes geochemistry at Sar-Faryab bauxite deposit, Zagros Mountains, Iran,” J. Geochem. Explor. 107, 77–85 (2010).

    Article  Google Scholar 

  136. A. Zarasvandi, E. J. M. Carranza, and S. S. Ellahi, “Geological, geochemical, and mineralogical characteristics of the Mandan and Deh-now bauxite deposits, Zagros Fold Belt, Iran,” Ore Geol. Rev. 48, 125–138 (2012).

    Article  Google Scholar 

  137. K. Y. Zhu, H. M. Su, and S.Y. Jiang, “Mineralogical control and characteristics of rare earth elements occurrence in Carboniferous bauxites from western Henan Province, north China: A XRD, SEM-EDS and LA-ICP-MS analysis,” Ore Geol. Rev. 114, 103–144 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am very grateful to Mehmet Ali Ertürk and Abdullah Sar, the Firat University Department of Geology, for their valuable work during sampling. I would also like to thank the Firat University Scientific Research Projects Coordination Unit (FÜBAP) of Firat University, Elazığ/Turkey, for its financial support (no. MF.21.22). The constructive and detailed comments by two anonymous reviewers and suggestions by the Associate Editor, Dr M.A. Levitan, helped to improve this paper.

Funding

The Firat University Scientific Research Projects Coordination Unit (FÜBAP) (no. MF.21.22) of Firat University, Elazığ/Turkey, provided financial support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatice Kara.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatice Kara Mineral Signatures and Trace and Rare Earth Elements Constraints on the Sources of the Doğanşehir Bauxite Deposit (Malatya-Turkey). Geochem. Int. 61, 1394–1412 (2023). https://doi.org/10.1134/S0016702923110058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702923110058

Keywords:

Navigation