Skip to main content
Log in

Mathematical Simulation of Electron Transport in the Primary Photosynthetic Processes

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Summarized results of investigation of regulation of electron transport and associated processes in the photosynthetic membrane using methods of mathematical and computer modeling carried out at the Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, are presented in this review. Detailed kinetic models of processes in the thylakoid membrane were developed using the apparatus of differential equations. Fitting of the model curves to the data of spectral measurements allowed us to estimate the values of parameters that were not determined directly in experiments. The probabilistic method of agent-based Monte Carlo modeling provides ample opportunities for studying dynamics of heterogeneous systems based on the rules for the behavior of individual elements of the system. Algorithms for simplified representation of Big Data make it possible to monitor changes in the photosynthetic apparatus in the course of culture growth in a photobioreactor and for the purpose of environmental monitoring. Brownian and molecular models describe movement and interaction of individual electron carrier proteins and make it possible to study electrostatic, hydrophobic, and other interactions leading to regulation of conformational changes in the reaction complexes. Direct multiparticle models explicitly simulate Brownian diffusion of the mobile protein carriers and their electrostatic interactions with multienzyme complexes both in solution and in heterogeneous interior of a biomembrane. The combined use of methods of kinetic and Brownian multiparticle and molecular modeling makes it possible to study the mechanisms of regulation of an integral system of electron transport processes in plants and algae at molecular and subcellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Abbreviations

Cyt b 6 f :

cytochrome complexes

Fd:

ferredoxin

FNR:

ferredoxin-NADP+-reductase

MEA:

multiexponential approximation method

Pc:

plastocyanin

PQ:

plastoquinone

PSI and PSII:

multienzyme complexes of photosystems I and II

References

  1. Amesz, J. (1987) Photosynthesis, Elsevier.

  2. Rabinowitch, E., and Govindjee (1969) Photosynthesis, Wiley, NY.

  3. Hall, D. O., and Rao, K. (1999) Photosynthesis, Cambridge University Press, Cambridge.

  4. Ke, B. (2006) Photosynthesis: Photobiochemistry and Photobiophysics, Springer Science & Business Media.

  5. Nelson, N., and Yocum, C. F. (2006) Structure and function of photosystems I and II, Annu. Rev. Plant. Biol., 57, 521-565, https://doi.org/10.1146/annurev.arplant.57.032905.105350.

    Article  CAS  PubMed  Google Scholar 

  6. Barber, J. (2015) The Photosystems: Structure, Function and Molecular Biology, Elsevier.

  7. Barber, J., and Ruban, A. V. (2017) Photosynthesis and Bioenergetics, World Scientific.

  8. Rubin A.B. (2017) Compendium of Biophysics, Wiley & Sons, USA.

  9. Shevela, D., Bjorn, L., and Govindjee (2019) Photosynthesis: Solar Energy for Life, World Scientific, Singapore, https://doi.org/10.1142/10522.

  10. Stirbet, A., Lazar, D., Guo, Y., and Govindjee (2020) Photosynthesis: basics, history and modelling, Ann. Bot., 126, 511-537, https://doi.org/10.1093/aob/mcz171.

    Article  CAS  PubMed  Google Scholar 

  11. Ruban, A. V. (2012) The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting, Wiley, https://doi.org/10.1007/s11120-014-0015-7.

  12. Kouřil, R., Oostergetel, G. T., and Boekema, E. J. (2011) Fine structure of granal thylakoid membrane organization using cryo electron tomography, Biochim. Biophys. Acta Bioenerg., 1807, 368-374, https://doi.org/10.1016/j.bbabio.2010.11.007.

    Article  CAS  Google Scholar 

  13. Koochak, H., Puthiyaveetil, S., Mullendore, D. L., Li, M., and Kirchhoff, H. (2019) The structural and functional domains of plant thylakoid membranes, Plant J., 97, 412-429, https://doi.org/10.1111/tpj.14127.

    Article  CAS  PubMed  Google Scholar 

  14. Rantala, M, Rantala, S., and Aro, E.-M. (2020) Composition, phosphorylation and dynamic organization of photosynthetic protein complexes in plant thylakoid membrane, Photochem. Photobiol. Sci., 19, 604-619, https://doi.org/10.1039/D0PP00025F.

    Article  CAS  PubMed  Google Scholar 

  15. Holzapfel, C., and Bauer, R. (1975) Computer simulation of primary photosynthetic reactions compared with experimental results on O2-exchange and chlorophyll fluorescence of green plants, Z. Naturforsch., 30, 489-498, https://doi.org/10.1515/znc-1975-7-812.

    Article  Google Scholar 

  16. Kukushkin, A. K., Tikhonov, A. N., Blumenfeld, L. A., and Ruuge, E. K. (1973) Theoretical analysis of primary photosynthetic processes in higher plants and algae [in Russian], Doklady Akademii Nauk SSSR, 211, 718-721.

    CAS  PubMed  Google Scholar 

  17. Malkin, S. (1971) Fluorescence induction studies in isolated chloroplast. On the electron-transfer equilibrium in the pool of electron acceptors of photosystem II, Biochim. Biophys. Acta, 234, 425-427, https://doi.org/10.1016/0005-2728(71)90208-8.

    Article  Google Scholar 

  18. Sorokin, E. M. (1973) Non-cyclic electron transport and connected processes [in Russian], Soviet Plant Physiol., 20, 733-741.

    CAS  Google Scholar 

  19. Rubin, A. B., and Shinkarev, V. P. (1984) Electron transport in biological systems [in Russian], Nauka, Moscow.

  20. Riznichenko, G. Yu., Vorobjeva, T. N., Khrabrova, E. N., and Rubin, A. B. (1986) Comparative analysis of the kinetic and conformational characteristics of solubilized and embedded into liposomes pigment-protein complexes of higher plant Photosystem 1 [in Russian], Biophysics, 31, 793-799.

    CAS  Google Scholar 

  21. Riznichenko, G. Yu., Chrabrova, E. N., and Rubin, A. B. (1988) Identification of the parameters of photosynthetic electron transport system, Studia Biophys., 126, 51-59.

    CAS  Google Scholar 

  22. Rubin, A. B., and Riznichenko, G. Yu. (2009) Modeling of the primary processes in a photosynthetic membrane, in Photosynthesis in silico: understanding complexity from molecules to ecosystems (Laisk, A., Nedbal, L., and Govindjee, eds) Springer, Dordrecht, 29, 151-176, https://doi.org/10.1134/S000635091603009X.

  23. Riznichenko, G. Yu., Vorobjeva, T. N., Khrabrova, E. N., and Rubin, A. B. (1990) Identification of kinetic parameters of plastocyanin and P-700 interactions in chloroplasts and pigment–protein complexes of photosystem 1, Photosynthetica, 24, 495-501.

    CAS  Google Scholar 

  24. Riznichenko, G. Yu. (1991) Mathematical models of primary photosynthetic processes [in Russian], Usp. Nauk Tekh, Ser. Biofizika, VINITI, Moscow, 31.

  25. Riznichenko, G. Yu., and Rubin, A. B. (2020) Dynamic models of electron transport in photosynthesis [in Russian], IKI, Izhevsk.

  26. Rubin, A. B., and Riznichenko, G. Yu. (2014) Mathematical Biophysics, Springer, N.Y., https://doi.org/10.1007/978-1-4614-8702-9.

  27. Schatz, G. H., Brock, H., and Holzwarth, A. R. (1988) Kinetic and energetic model for the primary processes in photosystem II, Biophys. J., 54, 397-405, https://doi.org/10.1016/S0006-3495(88)82973-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roelofs, T. A., Lee, C.-H., and Holzwarth, A. R. (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts: a new approach to the characterization of the primary processes in photosystem II α- and β-units, Biophys. J., 61, 1147-1163, https://doi.org/10.1016/S0006-3495(92)81924-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baake, E., and Shloeder, J. P. (1992) Modelling the fast fluorescence rise of photosynthesis, Bull. Math. Biol., 54, 999-1021, https://doi.org/10.1007/BF02460663.

    Article  CAS  Google Scholar 

  30. Bouges-Bocquet, B. (1973) Electron transfer between two photosystems in spinach chloroplasts, Biochim. Biophys. Acta, 31, 250-256, https://doi.org/10.1016/0005-2728(73)90140-0.

    Article  Google Scholar 

  31. Velthuys, B. R., and Amesz, J. (1974) Charge accumulation at the reducing side of Photosystem 2 of photosynthesis, Biochim. Biophys. Acta, 333, 85-94, https://doi.org/10.1016/0005-2728(74)90165-0.

    Article  CAS  PubMed  Google Scholar 

  32. Stirbet, A., Govindjee, Strasser, B. J., and Strasser, R. J. (1998) Chlorophyll a fluorescence induction in higher plants: modelling and numerical simulation, J. Theor. Biol., 193, 131-151, https://doi.org/10.1006/jtbi.1998.0692.

    Article  CAS  Google Scholar 

  33. Stirbet, A., and Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J–I–P rise, Photosynth. Res., 113, 15-61, https://doi.org/10.1007/s11120-012-9754-5.

    Article  CAS  PubMed  Google Scholar 

  34. Stirbet, A., and Govindjee (2016) The slow phase of chlorophyll a fluorescence induction in silico: origin of the S–M fluorescence rise, Photosynth. Res., 130, 193-213, https://doi.org/10.1007/s11120-016-0243-0.

    Article  CAS  PubMed  Google Scholar 

  35. Vredenberg, W. J. (2000) A 3-state model for energy trapping and fluorescence in PS II incorporating radical pair recombination, Biophys. J., 79, 26-38, https://doi.org/10.1016/S0006-3495(00)76271-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lazár, D. (2003) Chlorophyll a fluorescence rise induced by high light illumination of dark adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity, J. Theor. Biol., 220, 469-503, https://doi.org/10.1006/JTBI.2003.3140.

    Article  PubMed  Google Scholar 

  37. Lazár, D. (2009) Modelling of light-induced chlorophyll a fluorescence rise (O–J–I–P transient) and changes in 820 nm-transmittance signal of photosynthesis, Photosynthetica, 47, 483-498, https://doi.org/10.1007/s11099-009-0074-8.

    Article  CAS  Google Scholar 

  38. Lazár, D. (2013) Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise, J. Theor. Biol., 335, 249-264, https://doi.org/10.1016/j.jtbi.2013.06.028.

    Article  CAS  PubMed  Google Scholar 

  39. Belyaeva, N. E., Bulychev, A. A., Riznichenko, G. Yu., and Rubin, A. B. (2016) Thylakoid membrane model of the Chl a fluorescence transient and P700 induction kinetics in plant leaves, Photosynth. Res., 130, 491-515, https://doi.org/10.1007/s11120-016-0289-z.

    Article  CAS  PubMed  Google Scholar 

  40. Belyaeva, N. E., Bulychev, A. A., Riznichenko, G. Yu., and Rubin, A. B. (2019) Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model, Photosynth. Res., 140, 1-19, https://doi.org/10.1007/s11120-019-00627-8.

    Article  CAS  PubMed  Google Scholar 

  41. Belyaeva, N. E., Bulychev, A. A., Klementiev, K. E., Paschenko, V. Z., Riznichenko, G. Yu., et al. (2020) Model quantification of the light-induced thylakoid membrane processes in Synechocystis sp. PCC 6803 in vivo and after exposure to radioactive irradiation, Photosynth. Res., 146, 259-278, https://doi.org/10.1007/s11120-020-00774-3.

    Article  CAS  PubMed  Google Scholar 

  42. Ebenhoh, O., Fucile, G., Finazzi, G. G., Rochaix, J.-D., and Goldschmidt-Clermont, M. (2014) Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model, Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 20130223, https://doi.org/10.1098/rstb.2013.0223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matuszyńska, A., Heidari, S., Jahns, P., and Ebenhoh, O. (2016) A mathematical model of non-photochemical quenching to study short-term light memory in plants, Biochim. Biophys. Acta, 1857, 1860-1869, https://doi.org/10.1016/j.bbabio.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  44. Feng, S., Fu, L., Xia, Q., Tan, J., Jiang, Y., and Guo, Y. (2018) Modelling and simulation of photosystem II chlorophyll fluorescence transition from dark-adapted state to light-adapted state, IET Syst. Biol., 12, 289-293, https://doi.org/10.1049/iet-syb.2018.5003.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Laisk, A., Nedbal, L., and Govindjee (2009) Photosynthesis in silico: understanding complexity from molecules to ecosystems, in Advances in Photosynthesis and Respiration (Govindjee, and Sharkey, T. D., eds) Springer, Dordrecht, 29, https://doi.org/10.1093/aob/mcq022.

  46. Zhu, X. G., Wang, Y., Ort, D. R., and Long, S. P. (2013) e-Photosynthesis: a comprehensive dynamic mechanistic model of C3 photosynthesis: from light capture to sucrose synthesis, Plant Cell Environ., 36, 1711-1727, https://doi.org/10.1111/pce.12025.

    Article  CAS  PubMed  Google Scholar 

  47. Vershubskii, A. V., Nevyantsev, S. M., and Tikhonov, A. N. (2018) Modeling of electron and proton transport in chloroplast membranes with regard to thioredoxin-dependent activation of the Calvin–Benson cycle and ATP synthase, Biochemistry (Moscow), Suppl. Ser. A Membr. Cell Biol., 12, 287-302, https://doi.org/10.1134/S1990747818020150.

    Article  Google Scholar 

  48. Vershubskii, A. V., and Tikhonov, A. N. (2020) pH-Dependent regulation of electron and proton transport in chloroplasts in situ and in silico, Biochemistry (Moscow), Suppl. Ser. A Membr. Cell Biol., 14, 154-165, https://doi.org/10.1007/s11120-013-9845-y.

    Article  CAS  Google Scholar 

  49. Saadat, N. P., Nies, T., van Aalst, M., Hank, B., Demirtas, B., et al. (2021) Computational analysis of alternative photosynthetic electron flows linked with oxidative stress, Front. Plant Sci., 12, 750580, https://doi.org/10.3389/fpls.2021.750580.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stirbet, A., Riznichenko, G. Yu., Rubin, A. B., and Govindjee (2014) Modeling chlorophyll a fluorescence transient: relation to photosynthesis, Biochemistry (Moscow), 79, 291-323, https://doi.org/10.1134/S0006297914040014.

    Article  CAS  Google Scholar 

  51. Riznichenko, G. Yu., Lebedeva, G. V., Demin, O. V., and Rubin, A. B. (1999) Kinetic mechanisms of biological regulation in photosynthetic organisms, J. Biol. Phys., 25, 177-192, https://doi.org/10.1023/A:100510170318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lebedeva, G. V., Belyaeva, N. E., Riznichenko, G. Yu., Rubin, A. B., and Demin, O. V. (2000) Kinetic model of photosystem II of higher green plants [in Russian], Russ. J. Phys. Chem B, 74, 1702-1710.

    Google Scholar 

  53. Lebedeva, G. V., Belyaeva, N. E., Demin, O. V., Riznichenko, G. Yu., and Rubin, A. B. (2002) Kinetic model of primary processes of photosynthesis in chloroplasts. Fast phase of chlorophyll fluorescence induction under light of various intensity [in Russian], Biophysics, 47, 968-980.

    Google Scholar 

  54. Belyaeva, N. E., Schmitt, F.-J., Steffen, R., Paschenko, V. Z., Riznichenko, G. Yu., et al. (2008) PSII model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns-10 s on dark-adapted Chlorella pyrenoidosa cells, Photosyn. Res., 9, 105-119, https://doi.org/10.1007/s11120-008-9374-2.

    Article  CAS  Google Scholar 

  55. Belyaeva, N. E., Schmitt, F.-J., Paschenko, V. Z., Riznichenko, G. Yu., Rubin, A. B., et al. (2011) PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies, BioSystems, 103, 188-195, https://doi.org/10.1016/j.biosystems.2010.09.014.

    Article  CAS  PubMed  Google Scholar 

  56. Schansker, G., Tóth, S. Z., Kovács, L., Holzwarth, A. R., and Garab, G. (2011) Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise, Biochim. Biophys. Acta Bioenerg., 1807, 1032-1043, https://doi.org/10.1016/j.bbabio.2011.05.022.

    Article  CAS  Google Scholar 

  57. Magyar, M., Sipka, G., Kovács, L., Ughy, B., Zhu, Q., et al. (2018) Rate-limiting steps in the dark-to-light transition of Photosystem II – revealed by chlorophyll-a fluorescence induction, Sci. Rep., 8, 2755, https://doi.org/10.1038/s41598-018-21195-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ustinin, D. M., Kovalenko, I. B., Riznichenko, G. Yu., and Rubin, A. B. (2013) Combination of different simulation techniques in the complex model of photosynthetic membrane [in Russian], Comput. Res. Model., 5, 65-81, https://doi.org/10.20537/2076-7633-2013-5-1-65-81.

    Article  Google Scholar 

  59. Duysens, L. N. M., and Sweers, H. E. (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence, Photosynth. Bacteria, 372, 353-372.

    Google Scholar 

  60. Zhu, X.-G., Govindjee, Baker, N. R., deSturler, E., Ort, D. R., et al. (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete set of excitation energy and electron transfer associated with photosystem II, Planta, 223, 114-133, https://doi.org/10.1007/s00425-005-0064-4.

    Article  CAS  PubMed  Google Scholar 

  61. Xin, C.-P., Yang, J., and Zhu, X.-G. (2013) A model of chlorophyll a fluorescence induction kinetics with explicit description of structural constraints of individual photosystem II units, Photosynth. Res., 117, 339-354, https://doi.org/10.1007/s11120-013-9894-2.

    Article  CAS  PubMed  Google Scholar 

  62. Belyaeva, N. E., Schmitt, F.-J., Paschenko, V. Z., Riznichenko, G. Yu., Rubin, A. B., et al. (2014) Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green algae Chlorella pyrenoidosa Chick, Plant Physiol. Biochem., 77, 49-59, https://doi.org/10.1016/j.plaphy.2014.01.017.

    Article  CAS  PubMed  Google Scholar 

  63. Belyaeva, N. E., Schmitt, F.-J., Paschenko, V. Z., Riznichenko, G. Yu., and Rubin, A. B. (2015) Modelling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash induced fluorescence quantum yield changes on the 100 ns-10 s time scale, Photosynth. Res., 125, 123-140, https://doi.org/10.1007/s11120-015-0163-4.

    Article  CAS  PubMed  Google Scholar 

  64. Belyaeva, N. E., Bulychev, A. A., Pashchenko, V. Z., Klementev, K. E., Ermachenko, P. A., et al. (2022) Dynamics of processes in algal thylakoid membranes in vivo studied in Photosystem II and thylakoid models by measurements of fluorescence induction, Biophysics, in press.

  65. Antal, T. K., Kovalenko, I. B., Rubin, A. B., and Tyystjärvi, E. (2013) Photosynthesis-related quantities for education and modeling, Photosynth. Res., 117, 1-30, https://doi.org/10.1007/s11120-013-9945-8.

    Article  CAS  PubMed  Google Scholar 

  66. Matuszyńska, A., Saadat, N. P., and Ebenhoh, O. (2019) Balancing energy supply during photosynthesis – a theoretical perspective, Physiol. Plant., 166, 392-402, https://doi.org/10.1111/ppl.12962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Snellenburg, J., Johnson, M. P., Ruban, A. V., van Grondelle, R., and van Stokkum, I. H. M. (2017) A four state parametric model for the kinetics of the non-photochemical quenching in Photosystem II, Biochim. Biophys. Acta, 1858, 854-864, https://doi.org/10.1016/j.bbabio.2017.08.004.

    Article  CAS  Google Scholar 

  68. Morales, A., Yin, X., Harbinson, J., Driever, S. M., Molenaar, J., et al. (2018) In silico analysis of the regulation of the photosynthetic electron transport chain in C3 plants, Plant Physiol., 176, 1247-1261, https://doi.org/10.1104/pp.17.00779.

    Article  CAS  PubMed  Google Scholar 

  69. Mathur, S., Sunoj, V., Elsheery, N., Jajoo, A., and Cao, K.-F. (2021) Regulation of Photosystem II heterogeneity and photochemistry in two cultivars of C4 crop sugarcane under chilling stress, Front. Plant Sci., 12, 627012, https://doi.org/10.3389/fpls.2021.627012.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Antal, T. K., Maslakov, A. S., Yakovleva, O. V., Krendeleva, T. E., Riznichenko, G. Yu., et al. (2018) Simulation of chlorophyll fluorescence rise and decay kinetics, and P700-related absorbance changes by using a rule-based kinetic Monte-Carlo method, Photosyn. Res., 138, 191-206, https://doi.org/10.1007/s11120-018-0564-2.

    Article  CAS  Google Scholar 

  71. Suslichenko, I. S., Trubitsin, B. V., Vershubskii, A. V., and Tikhonov, A. N. (2022) The noninvasive monitoring of the redox status of photosynthetic electron transport chains in Hibiscus rosa-sinensis and Tradescantia leaves, Plant Physiol. Biochem., 185, 233-243, https://doi.org/10.1016/j.plaphy.2022.06.002.

    Article  CAS  PubMed  Google Scholar 

  72. Maslakov, A. S. (2020) Describing processes in photosynthetic reaction center ensembles using a Monte Carlo kinetic model [in Russian], Comput. Res. Model., 12, 1207-1221, https://doi.org/10.20537/2076-7633-2020-12-5-1207-1221.

    Article  Google Scholar 

  73. Antal, T. K., Kolacheva, A., Maslakov, A., Riznichenko, G. Yu., Krendeleva, T. E., et al. (2013) Study of the effect of reducing conditions on the initial chlorophyll fluorescence rise in the green microalgae Chlamydomonas reinhardtii, Photosynth. Res., 114, 143-215, https://doi.org/10.1007/s11120-012-9789-7.

    Article  CAS  PubMed  Google Scholar 

  74. Joliot, P., and Joliot, A. (1981) Characterization of photosystem II centers by polarographic, spectroscopic and fluorescence methods. In Photosynthesis III (Akoyunoglou, G., ed.) Balaban International Science Services, Philadelphia, pp. 885-899.

  75. Guo, Y., and Tan, J. (2014) Kinetic Monte-Carlo simulation of the initial phases of chlorophyll fluorescence from photosystem II, BioSystems, 115, 1-4, https://doi.org/10.1016/j.biosystems.2013.10.004.

    Article  CAS  PubMed  Google Scholar 

  76. Ruban, A., Foyer, C., and Murchie, E. (2022) Photosynthesis in Action: Harvesting Light, Generating Electrons, Fixing Carbon, Academic Press.

  77. Staehelin, L. A., and Paolillo, D. J. (2020) A brief history of how microscopic studies led to the elucidation of the 3D architecture and macromolecular organization of higher plant thylakoids, Photosynth. Res., 145, 237-258, https://doi.org/10.1007/s11120-020-00782-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pospíšil, P., and Dau, H. (2002) Valinomycin sensitivity proves that light induced thylakoid voltages result in millisecond phase of chlorophyll fluorescence transients, Biochim. Biophys. Acta, 1554, 94-100, https://doi.org/10.1016/s0005-2728(02)00216-5.

    Article  PubMed  Google Scholar 

  79. Boisvert, S., Joly, D., and Carpentier, R. (2006) Quantitative analysis of the experimental O-I-J-P kinetic fluorescence induction kinetics. Apparent activation energy and origin of each kinetic step, FEBS J., 273, 4770-4777, https://doi.org/10.1111/j.1742-4658.2006.05475.x.

    Article  CAS  PubMed  Google Scholar 

  80. Vredenberg, W. J. (2008) Algorithm for analysis of OJDIP fluorescence induction curves in terms of photo-and electrochemical events in photosystems of plant cells: derivation and application, J. Photochem. Photobiol. B, 91, 58-65, https://doi.org/10.1016/j.jphotobiol.2008.01.005.

    Article  CAS  PubMed  Google Scholar 

  81. Vredenberg, W., and Prasil, O. (2009) Modeling of chlorophyll a fluorescence kinetics, in Photosynthesis in silico: Understanding Complexity from Molecules to Ecosystems (Laisk, A., Nedbal, L., and Govindjee, eds) Dordrecht, Springer, 29, 125-149, https://doi.org/10.1007/978-1-4020-9237-4_6.

  82. Strasser, B. J., and Strasser, R. J. (1995) Measuring fast fluorescence transients to address environmental questions: The JIP test, in Photosynthesis: From Light to Biosphere (Mathis, P., ed.), Kluwer Academic, The Netherlands, 5, 977-980, https://doi.org/10.1007/978-94-009-0173-5_1142.

  83. Solovchenko, A., Aflalo, C., Lukyanov, A., and Boussiba, S. (2013) Nondestructive monitoring of carotenogenesis in Haematococcus pluvialis via wholecell optical density spectra, Appl. Microbiol. Biotechnol., 97, 4533-4541, https://doi.org/10.1007/s00253-012-4677-9.

    Article  CAS  PubMed  Google Scholar 

  84. Plyusnina, T. Yu., Khruschev, S. S., Frolov, A. E., Riznichenko, G. Yu., and Rubin, A. B. (2019) Monitoring of the photosynthetic activity of the microalgae Chlorella under nitrogen depletion conditions, Biophysics, 64, 358-366, https://doi.org/10.1134/S0006350919030175.

    Article  CAS  Google Scholar 

  85. Kalaji, H. M., Oukarroum, A., Alexandrov, V., Kouzmanova, M., Brestic, M., et al. (2014) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements, Plant Physiol. Biochem., 81, 16-25, https://doi.org/10.1016/j.plaphy.2014.03.029.

    Article  CAS  PubMed  Google Scholar 

  86. Stirbet, A., Lazar, D., Kromdijk, J., and Govindjee (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses?, Photosynthetica, 56, 86-104, https://doi.org/10.1007/s11099-018-0770-3.

    Article  CAS  Google Scholar 

  87. Plyusnina, T. Yu., Khruschev, S. S., Riznichenko, G. Yu., and Rubin, A. B. (2015) An analysis of the chlorophyll fluorescence transient by spectral multi-exponential approximation, Biophysics, 60, 392-399, https://doi.org/10.1134/S000635091503015X.

    Article  CAS  Google Scholar 

  88. Antal, T., Konyukhov, I., Volgusheva, A., Plyusnina, T., Khruschev, S., et al. (2019) Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactiors, Physiol. Plant., 165, 476-486, https://doi.org/10.1111/ppl.12693.

    Article  CAS  PubMed  Google Scholar 

  89. Plyusnina, T., Khruschev, S., Degtereva, N., Konyukhov, I., Solovchenko, A., et al. (2020) Gradual changes in the photosynthetic apparatus triggered by nitrogen depletion during microalgae cultivation in photobioreactor, Photosynthetica, 58, 443-451, https://doi.org/10.32615/ps.2020.002.

    Article  CAS  Google Scholar 

  90. Kirchhoff, H., Mukherjee, U., and Galla, H. J. (2002) Molecular architecture of the thylakoid membrane: lipid diffusion space for plastoquinone, Biochemistry, 41, 4872-4882, https://doi.org/10.1021/bi011650y.

    Article  CAS  PubMed  Google Scholar 

  91. Albertsson, P.-A. (2001) A quantitative model of the domain structure of the photosynthetic membrane, Trends Plant. Sci., 6, 349-354, https://doi.org/10.1016/s1360-1385(01)02021-0.

    Article  CAS  PubMed  Google Scholar 

  92. McKenzie, S. D., Ibrahim, I. M., Aryal, U. K., and Puthiyaveetil, E. (2020) Stoichiometry of protein complexes in plant photosynthetic membranes, Biochim. Biophys. Acta Bioenergetics, 1861, 148141, https://doi.org/10.1016/j.bbabio.2019.148141.

    Article  CAS  PubMed  Google Scholar 

  93. Pearson Jr., D. C., and Gross, E. L. (1998) Brownian dynamics study of the interaction between plastocyanin and cytochrome f, Biophys. J., 75, 2698-2711, https://doi.org/10.1016/S0006-3495(98)77714-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gross, E. L., and Rosenberg, I. (2006) A Brownian dynamics study of the interaction of Phormidium cytochrome f with various cyanobacterial plastocyanins, Biophys. J., 90, 366-380, https://doi.org/10.1529/biophysj.105.065185.

    Article  CAS  PubMed  Google Scholar 

  95. Khruschev, S. S., Abaturova, A. M., Fedorov, V. A., Ustinin, D. M., Kovalenko, I. B., et al. (2015) Brownian–dynamics simulations of protein–protein interactions in the photosynthetic electron transport chain, Biophysics, 60, 212-231, https://doi.org/10.1016/S0006-3495(03)74633-5.

    Article  CAS  Google Scholar 

  96. Kovalenko, I. B., Abaturova, A. M., Gromov, P. A., Ustinin, D. M., Grachev, E. A., et al. (2006) Direct simulation of plastocyanin and cytochrome f interactions in solution, Phys. Biol., 3, 121-129, https://doi.org/10.1088/1478-3975/3/2/004.

    Article  CAS  PubMed  Google Scholar 

  97. Kovalenko, I. B., Diakonova, A. N., Abaturova, A. M., Riznichenko, G. Yu., and Rubin, A. B. (2010) Direct computer simulation of ferredoxin and FNR complex formation in solution, Phys. Biol., 7, 026001, https://doi.org/10.1088/1478-3975/7/2/026001.

    Article  CAS  PubMed  Google Scholar 

  98. Kovalenko, I. B., Diakonova, A. N., Riznichenko, G. Yu., and Rubin, A. B. (2011) Computer simulation of interaction of photosystem 1 with plastocyanin and ferredoxin, BioSystems., 103, 180-187, https://doi.org/10.1016/j.biosystems.2010.09.013.

    Article  CAS  PubMed  Google Scholar 

  99. Kovalenko, I. B., Knyaseva, O. S., Antal, T. K., Ponomarev, V., Riznichenko, G. Yu., et al. (2017) Multiparticle Brownian dynamics simulation of experimental kinetics of cytochrome bf oxidation and photosystem 1 reduction by plastocyanin, Physiol. Plant., 161, 88-96, https://doi.org/10.1111/ppl.12570.

    Article  CAS  PubMed  Google Scholar 

  100. Knyazeva, O. S., Kovalenko, I. B., Abaturova, A. M., Riznichenko, G. Yu., Grachev, E. A., et al. (2010) Multiparticle computer simulation of plastocyanin diffusion and interaction with cytochrome f in the electrostatic field of the thylakoid membrane, Biophysics, 55, 221-227, https://doi.org/10.1134/S0006350910020090.

    Article  Google Scholar 

  101. Riznichenko, G. Yu., Kovalenko, I. B., Abaturova, A. M., Diakonova, A. N., Ustinin, D. M., et al. (2010) New direct dynamic models of protein interactions coupled to photosynthetic electron transport reactions, Biophys. Rev., 2, 101-110, https://doi.org/10.1007/s12551-010-0033-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Riznichenko, G. Yu., and Kovalenko, I. B. (2019) Multiparticle models of Brownian dynamics for the description of photosynthetic electron transfer involving protein mobile carriers, Int. J. Appl. Res. Bioinform., 9, 1-19, https://doi.org/10.4018/IJARB.2019010101.

    Article  Google Scholar 

  103. Khruschev, S. S., Abaturova, A. M., Diakonova, A. N., Ustinin, D. M., Zlenko, D. V., et al. (2013) Multi-particle Brownian Dynamics software ProKSim for protein-protein interactions modeling [in Russian], Comput. Res. Model., 5, 47-64, https://doi.org/10.20537/2076-7633-2013-5-1-47-64.

    Article  Google Scholar 

  104. Khruschev, S. S., Abaturova, A. M., Fedorov, V. A., Kovalenko, I. B., Riznichenko, G. Yu., et al. (2015) The identification of intermediate states of the electron transfer proteins plastocyanin and cytochrome f diffusional encounters, Biophysics, 60, 513-521, https://doi.org/10.1134/S0006350915040156.

    Article  CAS  Google Scholar 

  105. Diakonova, A. N., Khrushchev, S. S., Kovalenko, I. B., Riznichenko, G. Yu., and Rubin, A. B. (2016) Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction, Phys. Biol., 13, 056004, https://doi.org/10.1088/1478-3975/13/5/056004.

    Article  CAS  PubMed  Google Scholar 

  106. Diakonova, A. N., Khruschev, S. S., Kovalenko, I. B., Riznichenko, G. Yu., and Rubin, A. B. (2016) The role of electrostatic interactions in the formation of ferredoxin–ferredoxin NADP+ reductase and ferredoxin–hydrogenase complexes, Biophysics, 61, 572-579, https://doi.org/10.1134/S0006350916040060.

    Article  CAS  Google Scholar 

  107. Riznichenko, G. Yu., Plyusnina, T. Yu., Diakonova, A. N., Kovalenko, I. B., Khruschev, S. S., et al. (2017) pH regulation of hydrogen–generating microalgae photosynthetic chain. Kinetic and multiparticle Brownian models, Nonlinearity: Problems, Solutions and Applications, Science Publishers, Inc., United States, pp. 181-202.

  108. Fedorov, V. A., Kovalenko, I. B., Khruschev, S. S., Ustinin, D. M., Antal, T. K., et al. (2019) Comparative analysis of plastocyanin–cytochrome f complex formation in higher plants, green algae and cyanobacteria, Physiol. Plant., 166, 320-335, https://doi.org/10.1111/ppl.12940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the staff and graduate students of the Department of Biophysics, whose long-term joint work made it possible to obtain the results presented in this article.

Funding

The work was financially supported by the State Budget Projects of Moscow State University (nos. 16-116021660040-7, 121032500060-0). The work was partially funded by the Russian Foundation for Basic Research (grant no. 20-04-00465) and by the Russian Science Foundation (grants nos. 20-64-46018 and 22-11-00009).

We are grateful to the Russian Foundation for Basic Research for many years of support for research on photosynthesis.

The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Contributions

G. Yu. Riznichenko, A. B. Rubin – conception and work management; N. E. Belyaeva, I. B. Kovalenko, T. K. Antal, S. N. Goryachev, A. S. Maslakov, T. Yu. Plyusnina, V. A. Fedorov, S. S. Khruschev, O. V. Yakovleva – research; G. Yu. Riznichenko – writing the text.

Corresponding author

Correspondence to Galina Yu. Riznichenko.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Detailed materials on kinetic models of primary photosynthetic processes and associated processes can be provided upon request by the co-author of this review, Natalya E. Belyaeva, e-mail: natalmurav@yandex.ru. Detailed description of the stochastic model algorithm is given in the original article by the author of the code Alexey S. Maslakov [72], co-author of this review. Additional details can be provided upon request, e-mail: alexei.maslakov@gmail.com. ProKSim software for Brownian Dynamics simulation of protein–protein interactions can be provided upon request by the author Sergei S. Khruschev, e-mail: styx@biophys.msu.ru. Cyt f–Pc protein–protein complexes obtained by molecular dynamics methods for green plants, green algae, and cyananobacteria can be provided upon request by the co-author of this review, Vladimir A. Fedorov, e-mail: xbgth@yandex.ru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riznichenko, G.Y., Belyaeva, N.E., Kovalenko, I.B. et al. Mathematical Simulation of Electron Transport in the Primary Photosynthetic Processes. Biochemistry Moscow 87, 1065–1083 (2022). https://doi.org/10.1134/S0006297922100017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922100017

Keywords

Navigation