Skip to main content
Log in

Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this review, we present the data on the natural occurrence of chitin and its partially or fully deacetylated derivative chitosan, as well as their properties, methods of modification, and potential applications of derivatives with bactericidal, fungicidal, and antioxidant activities. The structure and physicochemical characteristics of the polymers, their functions, and features of chitin microbial synthesis and degradation, including the processes occurring in nature, are described. New data on the hydrolytic microorganisms capable of chitin degradation under extreme conditions are presented. Special attention is focused on the effect of physicochemical characteristics of chitosan, including molecular weight, degree of deacetylation, polydispersity index, and number of amino group derivatives (quaternized, succinyl, etc.) on the antimicrobial and antioxidant properties of modified polymers that can be of particular interest for biotechnology, medicine, and agriculture. Analysis of the available literature data confirms the importance of fundamental research to broaden our knowledge on the occurrence of chitin and chitosan in nature, their role in global biosphere cycles, and prospects of applied research aimed at using chitin, chitosan, and their derivatives in various aspects of human activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAPH:

2,2′-azobis(2-amidinopropane) dihy-drochloride

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

DA:

degree of acetylation

DD:

degree of deacetylation

DPPH:

2,2-diphenyl-1-picrylhydrazyl

DQ:

degree of quaternization

DS:

degree of substitution

EC50 :

minimum effective concentration causing 50% inhibition of mycelial growth

GI:

germination index

GTMAC:

gly-cidyltrimethylammonium chloride

Ip:

polydispersity index

MFC:

minimum fungicidal concentration

MIC:

minimum inhibitory concentration

MM:

molecular mass

QAG:

quaternary ammonium group

QCS:

quaternized chitosan

ROS:

reactive oxygen species

TMC:

N,N,N-trimethyl chitosan

References

  1. Muzzarelli, R. A. A. (1987) Chitin, Pergamon Press, Oxford.

    Google Scholar 

  2. Ravi Kumar, M. N. V. (2000) A review of chitin and chitosan applications, React. Funct. Polym., 46, 1–27.

    Article  Google Scholar 

  3. Rinaudo, M. (2006) Chitin and chitosan: properties and applications, Prog. Polym. Sci., 31, 603–632.

    Article  CAS  Google Scholar 

  4. Kumar, M. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiva, H., and Domb, A. J. (2004) Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 104, 6017–6084.

    Article  PubMed  Google Scholar 

  5. Skryabin, K. G., Mikhailov, S. N., and Varlamov, V. P. (eds.) (2013) Chitosan [in Russian], Tsentr “Bioinzheneriya RAN”, Moscow.

    Google Scholar 

  6. Wasko, A., Bulak, P., Polak- Berecka, M., Nowak, K., Polakowski, C., and Bieganowski, A. (2016) The first report of the physicochemical structure of chitin isolated from Hermetia illucens, Int. J. Biol. Macromol., 92, 316–320.

    Article  CAS  PubMed  Google Scholar 

  7. Khayrova, A., Lopatin, S., and Varlamov, V. (2019) Black soldier fly Hermetia illucens as a novel source of chitin and chitosan, Int. J. Sci., 8, 81–86.

    Google Scholar 

  8. Ehrlich, H., Ilan, M., Maldonado, M., Muricy, G., Bavestrello, G., Kljajic, Z., Carballo, J. L., Shiaparelli, S., Ereskovsky, A., Schupp, P., Born, R., Worch, H., Bazhenov, V. V., Kurek, D., Varlamov, V., Vyalikh, D., Kummer, K., Sivkov, V. V., Molodtsov, S. L., Meissner, H., Richter, G., Steck, E., Richter, W., Hunoldt, S., Kammer, M., Paasch, S., Krasokhin, V., Patzke, G., and Brunner, E. (2010) Three dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin, Int. J. Biol. Macromol., 47, 132–140.

    Article  CAS  PubMed  Google Scholar 

  9. Dornish, M., Kaplan, D. S., and Arepalli, S. R. (2012) Regulatory status of chitosan and derivatives, in Chitosan-Based Biopharmaceutical Delivery, Targeting and Polymer Therapeutics (Sarmento, B., and das Neves, J., eds.) John Wiley & Sons, New York, pp. 463–481.

    Chapter  Google Scholar 

  10. Kurek, D. (2013) Modern state of physicochemical methods from determination of main characteristics of chitosan and its derivatives, in Chitosan (Skryabin, K. G., Mikhailov, S. N., and Varlamov, V. P., eds.) [in Russian], Tsentr “Bioinzheneriya RAN”, Moscow, pp. 61–70.

  11. Richter, T., Gulich, M., and Richter, K. (2012) Quality control and Good Manufacturing Practice (GMP) for chitosan-based biopharmaceutical products, in Chitosan-Based Biopharmaceutical Delivery, Targeting and Polymer Therapeutics (Sarmento, B., and das Neves, J., eds.) John Wiley & Sons, New York, pp. 503–542.

  12. Chen, R. N., Chen, W. Y., Wang, S. T., Hsu, C. H., and Tsai, M. L. (2009) Changes in the Mark–Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths, Carbohydr. Polym., 78, 902–907.

    Article  CAS  Google Scholar 

  13. Lopatin, S. A. (2010) Problems in determination of molecular mass characteristics of chitosan, Rybprom, 2, 82–85.

    Google Scholar 

  14. Chen, M., Zhu, X., Li, Z., Guo, X., and Ling, P. (2010) Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in preparation of chitosan oligosaccharides (COS) with degree of polymerization (DP) 5-12 containing well-distributed acetyl groups, Int. J. Mass Spectr., 290, 94–99.

    Article  CAS  Google Scholar 

  15. Dos Santos, Z. M., Caroni, A. L. P. F., Pereira, M. R., da Silva, D. R., and Fonseca, J. L. C. (2009) Determination of deacetylation degree of chitosan: a comparison between conductometric titration and CHN elemental analysis, Carbohydr. Res., 344, 2591–2595.

    Article  PubMed  CAS  Google Scholar 

  16. Balazs, N., and Sipos, P. (2011) Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan, Carbohydr. Res., 342, 124–130.

    Article  CAS  Google Scholar 

  17. Shigemasa, Y., Matsuura, H., Sashiwa, H., and Saimoto, H. (1996) Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin, Int. J. Biol. Macromol., 18, 237–242.

    Article  CAS  PubMed  Google Scholar 

  18. Kasaai, M. R. (2010) Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: a review, Carbohydr. Polym., 79, 801–810.

    Article  CAS  Google Scholar 

  19. Varum, K. W., Ottoy, M. H., and Smidsrod, O. (2001) Acid hydrolysis of chitosan, Carbohydr. Polym., 46, 89–98.

    Article  CAS  Google Scholar 

  20. Einbu, A., Grasdalen, H., and Varum, K. W. (2007) Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid, Carbohydr. Res., 342, 1055–1062.

    Article  CAS  PubMed  Google Scholar 

  21. Lin, S.-B., Lin, Y.-C., and Chen, H.-H. (2009) Low molecular weight chitosan prepared with the aid of cellulase, lysozyme and chitinase: characterization and antibacterial activity, Food Chem., 116, 47–53.

    Article  CAS  Google Scholar 

  22. Il’ina, A. V., Zagorskaya, D. S., Levov, A. N., Albulov, A. I., Kovacheva, N. P., and Varlamov, V. P. (2009) The use of enzymatic preparation for the production of low molecular weight chitosan from the king crab hepatopancrease, Appl. Biochem. Microbiol., 45, 374–379.

    Article  CAS  Google Scholar 

  23. Aktuganov, G. E., Galimsianova, N. F., Gilvanova, E. A., Kuzmina, L. Yu., Boiko, T. F., Safina, V. R., and Melentiev, A. I. (2018) Characterization of chitinase produced by alkaliphilic Bacillus mannanilyticus IB-OR17 B1 strain, Appl. Biochem. Microbiol., 54, 505–511.

    Article  CAS  Google Scholar 

  24. Tian, F., Liu, Y., Hu, K., and Zhao, B. (2004) Study of the depolymerization behavior of chitosan by hydrogen peroxide, Carbohydr. Polym., 57, 31–37.

    Article  CAS  Google Scholar 

  25. Qin, C. Q., Du, Y. M., and Xiao, L. (2002) Effect of hydrogen peroxide treatment on the molecular weight and structure of chitosan, Polym. Degrad. Stabil., 76, 211–218.

    Article  CAS  Google Scholar 

  26. Vasilieva, T., Lopatin, S., Varlamov, V., Miasnikov, V., Aung Myat Hein, and Vasiliev, M. (2016) Hydrolysis of chitin and chitosan in low temperature electron-beam plasma, Pure Appl. Chem., 88, 873–879.

    Article  CAS  Google Scholar 

  27. Rakhmetova, A. A., Bogoslovskaya, O. A. Ol’khovskaya, I. P., Zhigach, A. N., Il’ina, A. V., Varlamov, V. P., and Glushchenko, N. N. (2016) Wound-healing potential of soft-dosage forms with copper nanoparticles and low molecular weight chitosan derivatives, Vopr. Biol. Med. Farm. Khim., 19, 12–18.

    Google Scholar 

  28. Il’ina, A. V., Zubareva, A. A., Kurek, D. V., Levov, A. N., and Varlamov, V. P. (2012) Nanoparticles based on succinyl chitosan with doxorubicin: preparation and properties, Nanothechnol. Russia, 7, 85–92.doi: 10.1134/S1995078012010107.

    Article  Google Scholar 

  29. Rane, K. D., and Hoover, D. G. (1993) An evaluation of alkali and acid treatment for chitosan extraction from fungi, Proc. Biochem., 28, 115–118.

    Article  CAS  Google Scholar 

  30. Shinya, S., and Fukamizo, T. (2017) Interaction between chitosan and its related enzymes: a review, Int. J. Biol. Macromol., 104, 1422–1435.

    Article  CAS  PubMed  Google Scholar 

  31. Horst, M. N., Walker, A. N., and Klar, E. (1993) The pathway of crustacean chitin synthesis, in The Crustacean Integument: Morphology and Biochemistry (Horst, M. N., and Freeman, J. A., eds.), CRC Press, Boca Raton, pp. 113–149.

  32. Nemtsev, S. V. (2006) Complex Technology of Chitin and Chitosan from Crustacean Exoskeleton [in Russian], VNIRO, Moscow.

    Google Scholar 

  33. Nemtsev, S. V., Zueva, O. Yu., Khismatullin, M. R., Albulov, A. I., and Varlamov, V. P. (2004) Isolation of chitin and chitosan from honeybees, Appl. Biochem. Microbiol., 40, 39–43.

    Article  CAS  Google Scholar 

  34. Tereshina, V. M., Memorskaya, A. S., Feofilova, E. P., Nemtsev, D. V., and Kozlov, V. M. (1997) Isolation of polysaccharide complexes from mycelial fungi and determination of their deacetylation degree, Microbiology (Moscow), 66, 84–89.

    Google Scholar 

  35. Ruiz-Herrera, J., Gonzalez-Prieto, J. M., and Ruiz-Medrano, R. (2002) Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi, FEMS Yeast Res., 1, 247–256.

    Article  CAS  PubMed  Google Scholar 

  36. Tsigos, I., Nathalie, Z., Aggeliki, M., Alain, D., and Bouriotis, V. (1999) Mode of action of chitin deacetylase from Mucor rouxii on N-acetylchitooligosaccharides, Eur. J. Biochem., 261, 1–9.doi: 10.1046/j.1432-1327.1999.00186.x.

    Article  Google Scholar 

  37. Feofilova, E. P. (2002) Key role of chitin in formation of the fungal cell wall, in Chitin and Chitosan. Isolation, Properties, and Application (Skryabin, K. G., Vikhoreva, G. A., and Varlamov, V. P., eds.) [in Russian], Nauka, Moscow, pp. 79–99.

  38. Feofilova, E. P. (2002) Chitin from fungi: occurrence, biosynthesis, physicochemical properties, and application potential, in Chitin and Chitosan. Isolation, Properties, and Application (Skryabin, K. G., Vikhoreva, G. A., and Varlamov, V. P., eds.) [in Russian], Nauka, Moscow, pp. 100–111.

  39. Mysyakina, I. S., Bokareva, D. A., Usov, A. I., and Feofilova, E. P. (2012) Differences in the carbohydrate composition between the yeast-like and mycelial cells of Mucor hiemalis, Microbiology (Moscow), 81, 405–408.

    Article  CAS  Google Scholar 

  40. Karimi, K., and Zamani, A. (2013) Mucor indicus: biology and industrial application perspectives: a review, Biotechnol. Adv., 31, 466–481.

    Article  CAS  PubMed  Google Scholar 

  41. Gaill, F., Persson, J., Sugiyama, P., Vuong, R., and Chanzy, H. (1992) The chitin system in the tubes of deep sea hydrothermal vent worms, J. Struct. Biol., 109, 116–128.

    Article  CAS  Google Scholar 

  42. Bezrodnykh, E. A., Tikhonov, V. E., and Lopez-Llorca, L. V. (2010) Isolation of chitin from sea product waste and preparation of chitosan from it, Rybprom, 2, 9–12.

    Google Scholar 

  43. Morozov, A. A., and Likhoshway, Ye. V. (2016) Evolutionary history of the chitin synthases of eukaryotes, Glycobiology, 26, 635–639.

    Article  CAS  PubMed  Google Scholar 

  44. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor, Proc. Natl. Acad. Sci. USA, 103, 11086–11091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Knogge, W., and Scheel, D. (2006) LysM receptors recognize friend and foe, Proc. Natl. Acad. Sci. USA, 103, 10829–10830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lenardon, M. D., Munro, C. A., and Gow, N. A. (2010) Chitin synthesis and fungal pathogenesis, Curr. Opin. Microbiol., 13, 416–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sanchez-Vallet, A., Mesters, J. R., and Thomma, B. P. H. J. (2014) The battle for chitin recognition in plant–microbe interactions, FEMS Microbiol. Rev., 39, 171–183.

    Article  PubMed  CAS  Google Scholar 

  48. Latge, J. P. (2010) Tasting the fungal cell wall, Cell. Microbiol., 12, 863–872.

    Article  CAS  PubMed  Google Scholar 

  49. Levin, D. E. (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway, Genetics, 189, 1145–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Teparic, R., and Mrsa, V. (2013) Proteins involved in building, maintaining and remodeling of yeast cell walls, Curr. Genet., 59, 171–185.

    Article  CAS  PubMed  Google Scholar 

  51. Langner, T., and Gohre, V. (2016) Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions, Curr. Genet., 62, 243–254.

    Article  CAS  PubMed  Google Scholar 

  52. Bowman, S. M., and Free, S. J. (2006) The structure and synthesis of the fungal cell wall, BioEssays, 28, 799–808.

    Article  PubMed  Google Scholar 

  53. Roncero, C. (2002) The genetic complexity of chitin synthesis in fungi, Curr. Genet., 41, 367–378.

    Article  CAS  PubMed  Google Scholar 

  54. Ichinomiya, M., Yamada, E., Yamashita, S., Ohta, A., and Horiuchi, H. (2005) Class I and class II chitin synthases are involved in septum formation in the filamentous fungus Aspergillus nidulans, Eukaryot. Cell, 4, 1125–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Silverman, S. J., Sburlati, A., Slater, M. L., and Cabib, E. (1988) Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 85, 4735–4739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, J. E., Lee, H. J., Lee, J., Kim, K. W., Yun, S. H., Shim, W. B., and Lee, Y. W. (2009) Gibberella zeae chitin synthase genes, GzCHS5 and GzCHS7, are required for hyphal growth, perithecia formation, and pathogenicity, Curr. Genet., 55, 449–459.

    Article  CAS  PubMed  Google Scholar 

  57. Weber, I., Assmann, D., Thines, E., and Steinberg, G. (2006) Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis, Plant Cell, 8, 225–242.

    Article  CAS  Google Scholar 

  58. Treitschke, S., Doehlemann, G., Schuster, M., and Steinberg, G. (2010) The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis, Plant Cell., 22, 2476–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cui, Z., Wang, Y., Lei, N., Wang, K., and Zhu, T. (2013) Botrytis cinerea chitin synthase BcChsVI is required for normal growth and pathogenicity, Curr. Genet., 59, 119–128.

    Article  CAS  PubMed  Google Scholar 

  60. Duran, A., Bowers, B., and Cabib, E. (1975) Chitin synthetase zymogen is attached to the yeast plasma membrane, Proc. Natl. Acad. Sci. USA, 72, 3952–3955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bowen, A. R., Chen- Wu, J. L., Momany, M., Young, R., Szaniszlo, P. J., and Robbins, P. W. (1992) Classification of fungal chitin synthases, Proc. Natl. Acad. Sci. USA, 89, 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valdivia, R. H., and Schekman, R. (2003) The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane, Proc. Natl. Acad. Sci. USA, 100, 10287–10292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Starr, T. L., Pagant, S., Wang, C. W., and Schekman, R. (2012) Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast, PLoS One, 7, e46386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cabib, E., Blanco, N., Grau, C., Rodriguez-Pena, J. M., and Arroyo, J. (2007) Crh1p and Crh2p are required for the cross-linking of chitin to ß(1-6)glucan in the Saccharomyces cerevisiae cell wall, Mol. Microbiol., 63, 921–935.

    Article  CAS  PubMed  Google Scholar 

  65. Cabib, E., and Arroyo, J. (2013) How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall, Nat. Rev. Microbiol., 11, 648–655.

    Article  CAS  PubMed  Google Scholar 

  66. Zakariassen, H., Hansen, M. C., Joranli, M., Eijsink, V. G., and Sorlie, M. (2011) Mutational effects on transglycosylating activity of family 18 chitinases and construction of a hypertransglycosylating mutant, Biochemistry, 50, 5693–5703.

    Article  CAS  PubMed  Google Scholar 

  67. Hartl, L., Zach, S., and Seidl-Seiboth, V. (2012) Fungal chitinases: diversity, mechanistic properties and biotechnological potential, Appl. Microbiol. Biotech., 93, 533–543.

    Article  CAS  Google Scholar 

  68. Chitnis, M. V., Munro, C. A., Brown, A. J., Gooday, G. W., Gow, N. A., and Deshpande, M. V. (2002) The zygomycetous fungus, Benjaminiella poitrasii contains a large family of differentially regulated chitin synthase genes, Fungal Genet. Biol., 36, 215–223.

    Article  CAS  PubMed  Google Scholar 

  69. Lopez-Matas, M. A., Eslava, A. P., and Diaz-Minguez, J. M. (2000) Mcchs1, a member of a chitin synthase gene family in Mucor circinelloides, is differentially expressed during dimorphism, Curr. Microbiol., 40, 169–175.

    Article  CAS  PubMed  Google Scholar 

  70. Melentiev, A. I., and Aktuganov, G. E. (2013) Enzymes degrading chitin and chitosan, in Chitosan (Skryabin, K. G., Mikhailov, S. N., and Varlamov, V. P., eds.) [in Russian], Tsentr “Bioinzheneriya RAN”, Moscow, pp. 71–114.

  71. Kielak, A. M., Cretoiu, M. S., Semenov, A. V., Sorensen, S. J., and van Elsas, J. D. (2013) Bacterial chitinolytic communities respond to chitin and pH alteration in soil, Appl. Environ. Microbiol., 79, 263–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bai, Y., Eijsink, V. G., Kielak, A. M., van Veen, J. A., and de Boer, W. (2016) Genomic comparison of chitinolytic enzyme systems from terrestrial and aquatic bacteria, Environ. Microbiol., 18, 38–49.

    Article  CAS  PubMed  Google Scholar 

  73. Sanfilippo, C., Malaguarnera, L., and Di Rosa, M. (2016) Chitinase expression in Alzheimer’s disease and nondemented brains regions, J. Neurol. Sci., 369, 242–249.

    Article  CAS  PubMed  Google Scholar 

  74. Nguyen, S. T. C., Freund, H. L., Kasanjian, J., and Berlemont, R. (2018) Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy, Appl. Microbiol. Biotech., 102, 1629–1637.

    Article  CAS  Google Scholar 

  75. Oyeleye, A., and Normi, Y. M. (2018) Chitinase: diversity, limitations, and trends in engineering for suitable applications, Biosci. Rep., 38, BSR2018032300.

  76. Tamadoni Jahromi, S., and Barzkar, N. (2018) Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst, Int. J. Biol. Macromol., 120 (Pt. B), 2147–2154.

    Article  CAS  PubMed  Google Scholar 

  77. Lacombe-Harvey, M.-E., Brzezinski, R., and Beaulieu, C. (2018) Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution, Appl. Microbiol. Biotech., 102, 7219–7230.

    Article  CAS  Google Scholar 

  78. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. (2014) The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 42 (Database issue), D490–D495.

    Article  CAS  PubMed  Google Scholar 

  79. Howard, M., Ekborg, N. A., Weiner, R. M., and Hutcheson, S. W. (2003) Detection and characterization of chitinases and other chitin-modifying enzymes: a review, J. Indust. Microbiol. Biotechnol., 30, 627–635.

    Article  CAS  Google Scholar 

  80. Manucharova, N. A., Trosheva, E. V., Kol’tsova, E. M., Demkina, E. V., El’-Registan, G. I., Karaevskaya, E. V., Rivkina, E. M., and Mardanov, A. V. (2016) Characterization of the structure of the prokaryotic complex of Antarctic permafrost by molecular genetic techniques, Microbiology (Moscow), 85, 102–108.

    Article  CAS  Google Scholar 

  81. Sorokin, D. Y., Tourova, T. P., Sukhacheva, M. V., Mardanov, A. V., and Ravin, N. V. (2012) Bacterial chitin utilization at extremely haloalkaline conditions, Extremophiles, 16, 883–894.

    Article  CAS  PubMed  Google Scholar 

  82. Sorokin, D. Y., Gumerov, V. M., Rakitin, A. L., Beletsky, A. V., Damste, J. S. S., Muyzer, G., Mardanov, A. V., and Ravin, N. V. (2014) Genome analysis of Chitinivibrio alkaliphilus gen. nov., sp. nov., a novel extremely haloalkaliphilic anaerobic chitinolytic bacterium from the candidate phylum Termite Group 3, Environ. Microbiol., 16, 1549–1565.

    Article  CAS  PubMed  Google Scholar 

  83. Sorokin, D. Y., Rakitin, A. L., Gumerov, V. M., Beletsky, A. V., Sinninghe Damste, J. S., Mardanov, A. V., and Ravin, N. V. (2016) Phenotypic and genomic properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., a haloalkaliphilic anaerobic chitinolytic bacterium representing a novel class in the phylum Fibrobacteres, Front. Microbiol., 7, 407; doi: 10.3389/fmicb.2016.00407.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sorokin, D. Y., Elcheninov, A. G., Toshchakov, S. V., Bale, N. J., Sinninghe Damste, J. S., Khijniak, T. V., and Kublanov, I. V. (2019) Natrarchaeobius chitinivorans gen. nov., sp. nov., and Natrarchaeobius halalkaliphilus sp. nov., alkaliphilic, chitin-utilizing haloarchaea from hypersaline alkaline lakes, Syst. Appl. Microbiol., 42, 309–318.doi: 10.1016/j.syapm.2019.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tran, D. M., Sugimoto, H., Nguyen, D. A., Watanabe, T., and Suzuki, K. (2018) Identification and characterization of chitinolytic bacteria isolated from a freshwater lake, Biosci. Biotechnol. Biochem., 82, 343–355.

    Article  CAS  PubMed  Google Scholar 

  86. Staley, J. T., Fuerst, J. A., Giovannoni, S., and Schlesner, H. (1992) The order Planctomycetales and the genera Planctomyces, Pirellula, Gemmata, and Isosphaera, in the Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications (Balows, A., Truper, H. G., Dworkin, M., Harder, W., and Schleifer, K.-H., eds.), Springer, New York, pp. 3710–3731.

    Chapter  Google Scholar 

  87. Ravin, N. V., Rakitin, A. L., Ivanova, A. A., Beletsky, A. V., Kulichevskaya, I. S., Mardanov, A. V., and Dedysh, S. N. (2018) Genome analysis of Fimbriiglobus ruber SP5T, a planctomycete with confirmed chitinolytic capability, Appl. Environ. Microbiol., 84, e02645-17.

  88. Kulichevskaya, I. S., Naumov, D. G., Ivanova, A. A., Rakitin, A. L., and Dedysh, S. N. (2019) Detection of chitinolytic capabilities in the freshwater planctomycete Planctomicrobium piriforme, Microbiology, 88, 423–432.

    Article  CAS  Google Scholar 

  89. Belova, S. E., Ravin, N. V., Pankratov, T. A., Rakitin, A. L., Ivanova, A. A., Beletsky, A. V., Mardanov, A. V., Sinninghe Damste, J. S., and Dedysh, S. N. (2018) Hydrolytic capabilities as a key to environmental success: chitinolytic and cellulolytic acidobacteria from acidic Sub-Arctic soils and boreal peatlands, Front. Microbiol., 9, 2775.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Reintjes, G., Arnosti, C., Fuchs, B. M., and Amann, R. (2017) An alternative polysaccharide uptake mechanism of marine bacteria, ISME J., 11, 1640–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Boedeker, C., Schuler, M., Reintjes, G., Jeske, O., van Teeseling, M. C. F., Jogler, M., Rast, P., Borchert, D., Devos, D. P., Kucklick, M., Schaffer, M., Kolter, R., van Niftrik, L., Engelmann, S., Amann, R., Rohde, M., Engelhardt, H., and Jogler, C. (2017) Determining the bacterial cell biology of planctomycetes, Nat. Commun., 8, 14853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kumar, M. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., and Domb, A. J. (2004) Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 104, 6017–6084.

    Article  PubMed  Google Scholar 

  93. Dutta, P. K., Tripathi, S., Mehrotra, G. K., and Dutta, J. (2009) Perspectives for chitosan based antimicrobial films in food applications, Food Chem., 114, 1173–1182.

    Article  CAS  Google Scholar 

  94. Goy, R. C., de Britto, D., and Assis, O. B. G. (2009) A review of the antimicrobial activity of chitosan, Polimeros, 19, 241–247.

    Article  CAS  Google Scholar 

  95. Kuprina, E., Kirillov, A. I., Ishevski, A. L., and Murashev, S. V. (2015) Food supplement based on chitin with enhanced lipid-lowering and sorption properties, Prog. Chem. Appl. Chitin Deriv., 20, 156–161.

    Google Scholar 

  96. Popova, E. V., Domnina, N. S., Kovalenko, N. M., Borisova, E. A., Kolesnikov, L. E., and Tyuterev, S. L. (2017) Biological activity of chitosan with different molecular mass, Vest. Zashch. Rast., 3, 28–33.

    Google Scholar 

  97. Shagdarova, B. Ts., Il’ina, A. V., Lopatin, S. A., Kartashov, M. I., Arslanova, L. R., Dzhavakhiya, V. G., and Varlamov, V. P. (2018) Study of the protective activity of chitosan hydrolysate against Septoria leaf blotch of wheat and brown spot of tobacco, Appl. Biochem. Microbiol., 54, 68–73.

    Article  Google Scholar 

  98. Varlamov, V. P., and Mysyakina, I. S. (2018) Chitosan in biology, microbiology, medicine, and agriculture, Microbiology, 87, 712–715.

    Article  CAS  Google Scholar 

  99. Roberts, G. A. (2008) Thirty years of progress in chitin and chitosan, Prog. Chem. Appl. Chitin Deriv., 13, 7–15.

    Google Scholar 

  100. Tan, W., Li, Q., Dong, F., Wei, L., and Guo, Z. (2016) Synthesis, characterization, and antifungal property of chitosan ammonium salts with halogens, Int. J. Biol. Macromol., 92, 293–298.

    Article  CAS  PubMed  Google Scholar 

  101. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., and Ellis, J. (2012) The top 10 fungal pathogens in molecular plant pathology, Mol. Plant Pathol., 13, 414–430.

    Article  PubMed  Google Scholar 

  102. Badawy, M. E. I., Rabea, E. I., and Ismail, R. I. A. (2015) Antimicrobial activity of different molecular weight chitosans produced from shrimp shells against different plant pathogens, Curr. Bioact. Compounds, 11, 264–273.

    Article  CAS  Google Scholar 

  103. Gooday, G. W. (1990) The ecology of chitin degradation, Adv. Microb. Ecol., 11, 387–419.

    Article  CAS  Google Scholar 

  104. Sathiyabama, M., and Parthasarathy, R. (2016) Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi, Carbohydr. Polym., 151, 321–325.

    Article  CAS  PubMed  Google Scholar 

  105. Malerba, M., and Cerana, R. (2018) Recent advances of chitosan applications in plants, Polymers, 10, 118; doi: 10.3390/polym10020118.

    Article  PubMed Central  CAS  Google Scholar 

  106. Sun, C., Fu, D., Jin, L., Chen, M., Zheng, X., and Yu, T. (2018) Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea, Carbohydr. Polym., 199, 341–352.

    Article  CAS  PubMed  Google Scholar 

  107. Xing, K., Xing, Y., Liu, Y., Zhang, Y., Shen, X., Li, X., Miao, X., Feng, Z., Peng, X., and Qin, S. (2018) Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata, Carbohydr. Polym., 192, 95–103.

    Article  CAS  PubMed  Google Scholar 

  108. Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., and Li, P. (2007) Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan, Carbohydr. Res., 342, 1329–1332.

    Article  CAS  PubMed  Google Scholar 

  109. Badawy, M. E. I., and Rabea, E. I. (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit, Postharvest Biol. Technol., 51, 110–117.

    Article  CAS  Google Scholar 

  110. Silva, S., Jr., Stamford, N. P., Lima, M. A. B., Arnaud, T. M. S., Pintado, M. M., and Sarmento, B. F. (2014) Characterization and inhibitory activity of chitosan on hyphae growth and morphology of Botrytis cinerea plant pathogen, Int. J. Appl. Res. Nat. Prod., 7, 31–38.

    CAS  Google Scholar 

  111. Yoonkyung, P., Kim, M.-H., Park, S.-C., Cheong, H., Jang, M.-K., Nah, J.-W., and Hahm, K.-S. (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan, J. Microbiol. Biotech., 18, 1729–1734.

    Google Scholar 

  112. Xu, J., Zhao, X., Han, X., and Du, Y. (2007) Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro, Pestic. Biochem. Physiol., 87, 220–228.

    Article  CAS  Google Scholar 

  113. Rahman, M. H., Hjeljord, L. G., Aam, B. B., Sorlie, M., and Tronsmo, A. (2015) Antifungal effect of chitooligosaccharides with different degrees of polymerization, Eur. J. Plant Pathol., 141, 147–158.

    Article  CAS  Google Scholar 

  114. Heggset, E. B., Dybvik, A. I., Hoell, I. A., Norberg, A. L., Sorlie, M., Eijsink, V. G. H., and Varum, K. M. (2010) Degradation of chitosans with a family 46 chitosanase from Streptomyces coelicolor A3(2), Biomacromolecules, 11, 2487–2497.

    Article  CAS  PubMed  Google Scholar 

  115. Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., and Heras, A. (2009) Functional characterization of chitin and chitosan, Curr. Chem. Biol., 3, 203–230.

    CAS  Google Scholar 

  116. Badawy, M. E. I. (2010) Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens, J. Appl. Pol. Sci., 117, 960–969.

    Article  CAS  Google Scholar 

  117. Falcon, A. B., Cabrera, J. C., Costales, D., Ramirez, M. A., Cabrera, G., Toledo, V., and Martinez-Tellez, M. A. (2008) The effect of size and acetylation degree of chitosan derivatives on tobacco plant protection against Phytophthora parasitica nicotianae, World J. Microbiol. Biotech., 24, 103–112.

    Article  CAS  Google Scholar 

  118. Allan, C. R., and Hadwiger, L. A. (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition, Exp. Mycol., 3, 285–287.

    Article  CAS  Google Scholar 

  119. Choi, B.-K., Kim, K.-Y., Yoo, Y.-J., Oh, S.-J., Choi, J.-H., and Kim, C.-Y. (2001) In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans, Int. J. Antimicrob. Agents, 18, 553–557.

    Article  CAS  PubMed  Google Scholar 

  120. Verlee, A., Mincke, S., and Stevens, C. V. (2017) Recent developments in antibacterial and antifungal chitosan and its derivatives, Carbohydr. Polym., 164, 268–283.

    Article  CAS  PubMed  Google Scholar 

  121. Peng, Y., Han, B., Liu, W., and Xu, X. (2005) Preparation and antimicrobial activity of hydroxypropyl chitosan, Carbohydr. Res., 340, 1846–1851.

    Article  CAS  PubMed  Google Scholar 

  122. Karpova, N. V., Shagdarova, B. Ts., Lyalina, T. S., Il’ina, A. V., Tereshina, V. M., and Varlamov, V. P. (2019) Influence of the main characteristics of low weight chitosan on the growth of the plant pathogenic fungus Botrytis cinerea, Appl. Biochem. Microbiol., 55, 405–413.

    Article  CAS  Google Scholar 

  123. Kulikov, S. N., Chirkov, S. N., Il’ina, A. V., Lopatin, S. A., and Varlamov, V. P. (2006) Effect of the molecular weight of chitosan on its antiviral activity in plants, Appl. Biochem. Microbiol., 42, 200–203.

    Article  CAS  Google Scholar 

  124. Park, Y., Kim, M.-H., Park, S.-C., Cheong, H., Jang, M.-K., Nah, J.-W., and Hahm, K.-S. (2008) Investigation of the antifungal activity and mechanism of action of LMWS-chitosan, J. Microbiol. Biotechnol., 18, 1729–1734.

    CAS  PubMed  Google Scholar 

  125. Shagdarova, B., Lunkov, A., Il’ina, A., and Varlamov, V. (2019) Investigation of the properties of N-[(2-hydroxy-3-trimethylammonium) propyl] chloride chitosan derivatives, Int. J. Biol. Macromol., 124, 994–1001.

    Article  CAS  PubMed  Google Scholar 

  126. Lunkov, A. P., Il’ina, A. V., and Varlamov, V. P. (2018) Antioxidant, antibacterial, and fungicidal properties of chitosan-based films (review), Appl. Biochem. Microbiol., 54, 449–458.

    Article  CAS  Google Scholar 

  127. Guo, Z. Y., Chen, R., Xing, R. E., Liu, S., Yu, H. H., Wang, P. B., and Li, C. P. (2006) Novel derivatives of chitosan and their antifungal activities in vitro, Carbohydr. Res., 341, 351–354.

    Article  CAS  PubMed  Google Scholar 

  128. Guo, Z., Ren, J., Dong, F., Wang, G., and Li, P. (2012) Comparative study of the influence of active groups of chitosan derivatives on antifungal activity, J. Appl. Polym. Sci., 121, 2553–2556.

    Google Scholar 

  129. Jasso de Rodriguez, D., Hernandez-Castillo, D., Rodriguez-Garcia, R., and Angulo-Sanchez, J. L. (2005) Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi, Ind. Crops Prod., 21, 81–87.

    Article  Google Scholar 

  130. Badawy, M. E. I., Rabea, E. I., and Taktak, N. E. M. (2014) Antimicrobial and inhibitory enzyme activity of N-(benzyl)- and quaternary N-(benzyl) chitosan derivatives on plant pathogens, Carbohydr. Polym., 111, 670–682.

    Article  CAS  PubMed  Google Scholar 

  131. Ghaouth, El., Arul, A., Grenier, J., and Asselin, A. (1992) Antifungal activity of chitosan on two post-harvest pathogens of strawberry fruits, Phytopathology, 82, 398–402.

    Article  Google Scholar 

  132. Wei, L., Mi, Y., Zhang, J., Li, Q., Dong, F., and Guo, Z. (2019) Evaluation of quaternary ammonium chitosan derivatives differing in the length of alkyl side-chain: synthesis and antifungal activity, Int. J. Biol. Macromol., 129, 1127–1132.

    Article  CAS  PubMed  Google Scholar 

  133. Zhang, J., Tan, W., Zhang, Z., Song, Y., Li, Q., Dong, F., and Guo, Z. (2018) Synthesis, characterization, and the antifungal activity of chitosan derivatives containing urea groups, Int. J. Biol. Macromol., 109, 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  134. Gunasekaran, N., Vadivel, V., Halcovitch, N. R., and Tiekink, E. R. T. (2017) Preparation, characterization and in vitro antioxidant and cytotoxicity studies of some 2,4-dichloro-N-[di(alkyl/aryl)carbamothioyl] benzamide derivatives, Chem. Data Collect., 9-10, 263–276.

    Article  Google Scholar 

  135. Zheng, Q.-Z., Cheng, X.-M. Zhang, K. X.-M., Liu, K., Jiao, Q.-C., and Zhu, H.-L. (2010) Synthesis of some N-alkyl substituted urea derivatives as antibacterial and antifungal agents, Eur. J. Med. Chem., 45, 3207–3212.

    Article  CAS  PubMed  Google Scholar 

  136. Li, Q., Ren, J., Dong, F., Feng, Y., Gu, G., and Guo, Z. (2013) Synthesis and antifungal activity of thiadiazolfunctionalized chitosan derivatives, Carbohydr. Res., 373, 103–107.

    Article  CAS  PubMed  Google Scholar 

  137. Qin, Y., Liu, S., Xing, R., Yu, H., Li, K., Meng, X., Li, R., and Li, P. (2012) Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity, Carbohydr. Polym., 89, 388–393.

    Article  CAS  PubMed  Google Scholar 

  138. Li, R. C., Guo, Z. Y., and Jiang, P. A. (2010) Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives, Carbohydr. Res., 345, 1896–1900.

    Article  CAS  PubMed  Google Scholar 

  139. Yang, G., Jin, Q., Xu, C., Fan, S., Wang, C., and Xie, P. (2018) Synthesis, characterization and antifungal activity of coumarin-functionalized chitosan derivatives, Int. J. Biol. Macromol., 106, 179–184.

    Article  CAS  PubMed  Google Scholar 

  140. Hernandez-Lauzardo, A. N., Bautista-Banos, S., Velazquez-del Valle, M. G., Mendez-Montealvo, M. G., Sanchez-Rivera, M. M., and Bello-Perez, L. A. (2008) Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill, Carbohydr. Polym., 73, 541–547.

    Article  CAS  PubMed  Google Scholar 

  141. Jia, R., Duan, Y., Fang, Q., Wang, X., and Huang, J. (2016) Pyridine-grafted chitosan derivative as an antifungal agent, Food Chem., 196, 381–387.

    Article  CAS  PubMed  Google Scholar 

  142. Qiu, M., Wu, C., Ren, G., Liang, X., Wang, X., and Huang, J. (2014) Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus, Food Chem., 155, 105–111.

    Article  CAS  PubMed  Google Scholar 

  143. Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., and Li, P. (2007) The influence of the cationic of quaternized chitosan on antifungal activity, Int. J. Food Microbiol., 118, 214–217.

    Article  CAS  PubMed  Google Scholar 

  144. Mellegard, H., Strand, S. P., Christensen, B. E., Granum, P. E., and Hardy, S. P. (2011) Antibacterial activity of chemically defined chitosans: influence of molecular weight, degree of acetylation and test organism, Int. J. Food Microbiol., 148, 48–54.

    Article  CAS  PubMed  Google Scholar 

  145. Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., and Nasri, M. (2014) Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities, Int. J. Food Microbiol., 185, 57–63.

    Article  CAS  PubMed  Google Scholar 

  146. Chang, S.-H., Lin, H.-T. V., Wu, G.-J., and Tsai, G. J. (2015) pH effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan, Carbohydr. Polym., 134, 74–81.

    Article  CAS  PubMed  Google Scholar 

  147. Khasanova, L. M., Il’ina, A. V., Varlamov, V. P., Sinitsyna, O. A., and Sinitsyn, A. P. (2014) Hydrolysis of chitosan with an enzyme complex from Myceliophthora sp., Appl. Biochem. Microbiol., 50, 422–428.

    Article  CAS  Google Scholar 

  148. Shagdarova, B. Ts., Il’ina, A. V., and Varlamov, V. P. (2016) Antibacterial activity of alkylated and acylated derivatives of low-molecular-weight chitosan, Appl. Biochem. Microbiol., 52, 237–241.

    Article  CAS  Google Scholar 

  149. Vasil’eva, T. M., Lopatin, S. A., and Varlamov, V. P. (2016) Production of the low-molecular-weight chitin and chitosan forms in electron-beam plasma, High Energy Chem., 50, 150–154.

    Article  CAS  Google Scholar 

  150. Mourya, V. K., Inamdar, N. N., and Tiwari, A. (2010) Carboxymethyl chitosan and its applications, Adv. Mater. Lett., 1, 11–33.

    Article  CAS  Google Scholar 

  151. Bashir, S., Teo, Y. Y., Ramesh, S., Ramesh, K., and Khan, A. A. (2015) N-Succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review, Rev. Chem. Eng., 31, 563–597.

    Article  CAS  Google Scholar 

  152. Zhang, K., Weltrowski, A., Peschel, D., Fischer, S., and Groth, T. (2012) Synthesis and characterization of biologically active chitosan sulfates, ACS Symp. Ser., 1107, 297–314.

    Article  CAS  Google Scholar 

  153. Il’ina, A. V., Kulikov, S. N., Chalenko, G. I., Gerasimova, N. G., and Varlamov, V. P. (2008), Obtaining and study of monosaccharide derivatives of low molecular weight chitosan, Appl. Biochem. Microbiol., 44, 606–614.

    Google Scholar 

  154. Han, B., Wei, Y., Jia, X., Xu, J., and Li, G. (2012) Correlation of the structure, properties, and antimicrobial activity of a soluble thiolated chitosan derivative, J. Appl. Polym. Sci., 125 (S2), E143–E148.

    Article  CAS  Google Scholar 

  155. Domard, A., Rinaudo, M., and Terrassin, C. (1986) New method for the quaternization of chitosan, Int. J. Biol. Macromol., 8, 105–107.

    Article  CAS  Google Scholar 

  156. Lim, S., and Hudson, S. (2004) Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group, Carbohydr. Res., 339, 313–319.

    Article  CAS  PubMed  Google Scholar 

  157. Wu, M., Long, Z., Xiao, H., and Dong, C. (2016) Recent research progress on preparation and application of N,N,N-trimethyl chitosan, Carbohydr. Res., 434, 27–32.

    Article  CAS  PubMed  Google Scholar 

  158. Runarsson, O. V., Holappa, J., Nevalainen, T., Hjalmarsdottir, M., Jarvinen, T., Loftsson, T., Einarsson, J. M., Jonsdottir, S., Valdimarsdottir, M., and Masson, M. (2007) Antibacterial activity of methylated chitosan and chitooligomer derivatives: synthesis and structure activity relationships, Eur. Polym. J., 43, 2660–2671.

    Article  CAS  Google Scholar 

  159. Gruskiene, R., Deveikyte, R., and Makuska, R. (2013) Quaternization of chitosan and partial destruction of the quaternized derivatives making them suitable for electrospinning, Chemija, 24, 325–334.

    CAS  Google Scholar 

  160. Sajomsang, W., Gonil, P., and Saesoo, S. (2009) Synthesis and antibacterial activity of methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride, Eur. Polym. J., 45, 2319–2328.

    Article  CAS  Google Scholar 

  161. Sajomsang, W., Tantayanon, S., Tangpasuthadol, V., and Daly, W. H. (2009) Quaternization of N-aryl chitosan derivatives: synthesis, characterization, and antibacterial activity, Carbohydr. Res., 344, 2502–2511.

    Article  CAS  PubMed  Google Scholar 

  162. Xu, T., Xin, M., Li, M., Huang, H., Zhou, S., and Liu, J. (2011) Synthesis, characterization, and antibacterial activity of N,O-quaternary ammonium chitosan, Carbohydr. Res., 346, 2445–2450.

    Article  CAS  PubMed  Google Scholar 

  163. Xie, Y., Liu, X., and Chen, Q. (2007) Synthesis and characterization of water-soluble chitosan derivate and its antibacterial activity, Carbohydr. Polym., 69, 142–147.

    Article  CAS  Google Scholar 

  164. Kong, M., Chen, X. G., Xing, K., and Park, H. J. (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review, Int. J. Food Microbiol., 144, 51–63.

    Article  CAS  PubMed  Google Scholar 

  165. Eaton, P., Fernandes, J. C., Pereira, E., Pintado, M. E., and Xavier Malcata, F. (2008) Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus, Ultramicroscopy, 108, 1128–1134.

    Article  CAS  PubMed  Google Scholar 

  166. Jarmila, V., and Vavrikova, E. (2011) Chitosan derivatives with antimicrobial, antitumour and antioxidant activities - a review, Curr. Pharm. Des., 17, 3596–3607.

    Article  PubMed  Google Scholar 

  167. Jiang, Q. (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy, Free Radic. Biol. Med., 72, 76–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Murphy, M. P., Holmgren, A., Larsson, N. G., Halliwell, B., Chang, C. J., Kalyanaraman, B., Rhee, S. G., Thornalley, P. J., Partridge, L., Gems, D., Nystrom, T., Belousov, V., Schumacker, P. T., and Winterbourn, C. C. (2011) Unraveling the biological roles of reactive oxygen species, Cell Metab., 13, 361–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Anraku, M., Gebicki, J. M., Iohara, D., Tomida, H., Uekama, K., Maruyama, T., Hirayama, F., and Otagiri, M. (2018) Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies, Carbohydr. Polym., 199, 141–149.

    Article  CAS  PubMed  Google Scholar 

  170. Anraku, M., Fujii, T., Furutani, N., Kadowaki, D., Maruyama, T., Otagiri, M., Gebicki, J. M., and Tomida, H. (2009) Antioxidant effects of a dietary supplement: reduction of indices of oxidative stress in normal subjects by water-soluble chitosan, Food Chem. Toxicol., 47, 104–109.

    Article  CAS  PubMed  Google Scholar 

  171. Chang, S. H., Wu, C. H., and Tsai, G. J. (2018) Effects of chitosan molecular weight on its antioxidant and antimutagenic properties, Carbohydr. Polym., 181, 1026–1032.

    Article  CAS  PubMed  Google Scholar 

  172. Tomida, H., Fujii, T., Furutani, N., Michihara, A., Yasufuku, T., Akasaki, K., Maruyama, T., Otagiri, M., Gebicki, J. M., and Anraku, M. (2009) Antioxidant properties of some different molecular weight chitosans, Carbohydr. Res., 344, 1690–1696.

    Article  CAS  PubMed  Google Scholar 

  173. Zou, P., Yang, X., Wang, J., Li, Y., Yu, H., Zhang, Y., and Liu, G. (2016) Advances in characterization and biological activities of chitosan and chitosan oligosaccharides, Food Chem., 190, 1174–1181.

    Article  CAS  PubMed  Google Scholar 

  174. Xia, W., Liu, P., Zhang, J., and Chen, J. (2011) Biological activities of chitosan and chitooligosaccharides, Food Hydrocoll., 25, 170–179.

    Article  CAS  Google Scholar 

  175. Liu, H. T., Li, W. M., Xu, G., Li, X. Y., Bai, X. F., Wei, P., Yu, C., and Du, Y. G. (2009) Chitosan oligosaccharides attenuate hydrogen peroxide-induced stress injury in human umbilical vein endothelial cells, Pharmacol. Res., 59, 167–175.

    Article  CAS  PubMed  Google Scholar 

  176. Li, K., Xing, R., Liu, S., Li, R., Qin, Y., Meng, X., and Li, P. (2012) Separation of chitooligomers with several degrees of polymerization and study of their antioxidant activity, Carbohydr. Polym., 88, 896–903.

    Article  CAS  Google Scholar 

  177. Subhapradha, N., Saravanan, R., Ramasamy, P., Srinivasan, A., Shanmugam, V., and Shanmugam, A. (2014) Hepatoprotective effect of ß-chitosan from gladius of Sepioteuthis lessoniana against carbon tetrachlorideinduced oxidative stress in Wistar rats, Appl. Biochem. Biotech., 172, 9–20.

    Article  CAS  Google Scholar 

  178. Rajapakse, N., Kim, M. M., Mendis, E., and Kim, S. K. (2007) Inhibition of free radical-mediated oxidation of cellular biomolecules by carboxylated chitooligosaccharides, Bioorg. Med. Chem., 15, 997–1003.

    Article  CAS  PubMed  Google Scholar 

  179. Zhang, X., Geng, X., Jiang, H., Li, J., and Huang, J. (2012) Synthesis and characteristics of chitin and chitosan with the (2-hydroxy-3-trimethylammonium)propyl functionality, and evaluation of their antioxidant activity in vitro, Carbohydr. Polym., 89, 486–491.

    Article  CAS  PubMed  Google Scholar 

  180. Hu, Q., and Luo, Y. (2016) Polyphenol–chitosan conjugates: synthesis, characterization, and applications, Carbohydr. Polym., 151, 624–639.

    Article  CAS  PubMed  Google Scholar 

  181. Pasanphan, W., and Chirachanchai, S. (2008) Conjugation of gallic acid onto chitosan: an approach for green and water-based antioxidant, Carbohydr. Polym., 72, 169–177.

    Article  CAS  Google Scholar 

  182. Ngo, D. N. H., Qian, Z. J., Ngo, D. N. H., Vo, T. S., Wijesekara, I., and Kim, S. K. (2011) Gallyl chitooligosaccharides inhibit intracellular free radical-mediated oxidation, Food Chem., 128, 974–981.

    Article  CAS  Google Scholar 

  183. Eom, T. K., Senevirathne, M., and Kim, S. K. (2012) Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity, Environ. Toxicol. Pharmacol., 34, 519–527.

    Article  CAS  PubMed  Google Scholar 

  184. Aytekin, A. O., Morimura, S., and Kida, K. (2011) Synthesis of chitosan-caffeic acid derivatives and evaluation of their antioxidant activities, J. Biosci. Bioeng., 111, 212–216.

    Article  CAS  PubMed  Google Scholar 

  185. Woranuch, S., and Yoksan, R. (2013) Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan, Carbohydr. Polym., 96, 495–502.

    Article  CAS  PubMed  Google Scholar 

  186. Ngo, D. H., Qian, Z. J., Vo, T. S., Ryu, B., Ngo, D. N., and Kim, S. K. (2011) Antioxidant activity of gallate-chitooligosaccharides in mouse macrophage RAW264.7 cells, Carbohydr. Polym., 84, 1282–1288.

    Article  CAS  Google Scholar 

  187. Abdel-Wahhab, M. A., Aljawish, A., Kenawy, A. M., El-Nekeety, A. A., Hamed, H. S., and Abdel-Aziem, S. H. (2016) Grafting of gallic acid onto chitosan nano particles enhances antioxidant activities in vitro and protects against ochratoxin A toxicity in catfish (Clarias gariepinus), Environ. Toxicol. Pharmacol., 41, 279–288.

    Article  CAS  PubMed  Google Scholar 

  188. Liu, J., Lu, J.-F., Kan, J., Tang, Y.-Q., and Jin, C.-H. (2013) Preparation, characterization and antioxidant activity of phenolic acids grafted carboxymethyl chitosan, Int. J. Biol. Macromol., 62, 85–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding. This work was supported by the Ministry of Science and Higher Education of the Russian Federation and Russian Foundation for Basic Research (project 18-015-00402-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Varlamov.

Ethics declarations

Compliance with ethical norms. This article does not contain description of studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or any other area.

Russian Text © The Author(s), 2020, published in Uspekhi Biologicheskoi Khimii, 2020, Vol. 60, pp. 317-368.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlamov, V.P., Il’ina, A.V., Shagdarova, B.T. et al. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. Biochemistry Moscow 85 (Suppl 1), 154–176 (2020). https://doi.org/10.1134/S0006297920140084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920140084

Keywords

Navigation