Skip to main content
Log in

Flagella of halophilic archaea: Differences in supramolecular organization

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Archaeal flagella are similar functionally to bacterial flagella, but structurally they are completely different. Helical archaeal flagellar filaments are formed of protein subunits called flagellins (archaellins). Notwithstanding progress in studies of archaeal flagella achieved in recent years, many problems in this area are still unsolved. In this review, we analyze the formation of these supramolecular structures by the example of flagellar filaments of halophilic archaea. Recent data on the structure of the flagellar filaments demonstrate that their supramolecular organization differs considerably in different haloarchaeal species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Woese, C. R., and Fox, G. E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci. USA, 74, 5088–5090.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Vorob’eva, L. I. (2007) Archaea [in Russian], Akademkniga, Moscow.

    Google Scholar 

  3. Jarrell, K. F., and Albers, S. V. (2012) The archaellum: an old motility structure with a new name, Trends Microbiol., 20, 307–312.

    Article  PubMed  CAS  Google Scholar 

  4. Fedorov, O. V. (1998) Protein co-assembly folding as a mechanism of supramolecular structure formation, Uspekhi Biol. Khim., 38, 239–256.

    CAS  Google Scholar 

  5. Calladine, C. R. (1978) Change of waveform in bacterial flagella: the role of mechanics at the molecular level, J. Mol. Biol., 118, 457–479.

    Article  CAS  Google Scholar 

  6. Faulds-Pain, A., Birchall, C., Aldridge, C., Smith, W. D., Grimaldi, G., Nakamura, S., Miyata, T., Gray, J., Li, G., Tang, J. X., Namba, K., Minamino, T., and Aldridge, P. D. (2011) Flagellin redundancy in Caulobacter crescentus and its implications for flagellar filament assembly, J. Bacteriol., 193, 2695–2707.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Silverman, M., Zieg, J., Hilmen, M., and Simon, M. (1979) Phase variation in Salmonella: genetic analysis of a recombinational switch, Proc. Natl. Acad. Sci. USA, 76, 391–395.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Alam, M., and Oesterhelt, D. (1984) Morphology, function and isolation of halobacterial flagella, J. Mol. Biol., 176, 459–475.

    Article  PubMed  CAS  Google Scholar 

  9. Wirth, R. (2012) Response to Jarrell and Albers: seven letters less does not say more, Trends Microbiol., 20, 511–512.

    Article  PubMed  CAS  Google Scholar 

  10. Tripepi, M., Esquivel, R. N., Wirth, R., and Pohlschroder, M. (2013) Haloferax volcanii cells lacking the flagellin FlgA2 are hypermotile, Microbiology, 159, 2249–2258.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Herzog, B., and Wirth, R. (2012) Swimming behavior of selected species of Archaea, Appl. Environ. Microb., 78, 1670–1674.

    Article  CAS  Google Scholar 

  12. Nather, D. J., Rachel, R., Wanner, G., and Wirth, R. (2006) Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts, J. Bacteriol., 188, 6915–6923.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Jarrell, K. F., Ding, Y., Nair, D. B., and Siu, S. (2013) Surface appendages of archaea: structure, function, genetics and assembly, Life, 3, 86–117.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Patenge, N., Berendes, A., Engelhardt, H., Schuster, S. C., and Oesterhelt, D. (2001) The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum, Mol. Microbiol., 41, 653–663.

    Article  PubMed  CAS  Google Scholar 

  15. Chaban, B., Ng, S. Y., Kanbe, M., Saltzman, I., Nimmo, G., Aizawa, S. I., and Jarrell, K. F. (2007) Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis, Mol. Microbiol., 66, 596–609.

    Article  PubMed  CAS  Google Scholar 

  16. Lassak, K., Neiner, T., Ghosh, A., Klingl, A., Wirth, R., and Albers, S. (2012) Molecular analysis of the crenarchaeal flagellum, Mol. Microbiol., 83, 110–124.

    Article  PubMed  CAS  Google Scholar 

  17. Schlesner, M., Miller, A., Streif, S., Staudinger, W. F., Muller, J., Scheffer, B., and Oesterhelt, D. (2009) Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus, BMC Microbiol., 9, 56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Ghosh, A., and Albers, S. V. (2011) Assembly and function of the archaeal flagellum, Biochem. Soc. Transact., 39, 64–69.

    Article  CAS  Google Scholar 

  19. Banerjee, A., Ghosh, A., Mills, D. J., Kahnt, J., Vonck, J., and Albers, S. V. (2012) FlaX, a unique component of the crenarchaeal archaellum, forms oligomeric ring-shaped structures and interacts with the motor ATPase FlaI, J. Biol. Chem., 287, 43322–43330.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Thomas, N. A., and Jarrell, K. F. (2001) Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins, J. Bacteriol., 183, 7154–7164.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Ghosh, A., Hartung, S., van der Does, C., Tainer, J. A., and Albers, S. V. (2011) Archaeal flagellar ATPase motor shows ATP-dependent hexameric assembly and activity stimulation by specific lipid binding, Biochem. J., 437, 43–52.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Kalmokoff, M. L., and Jarrell, K. F. (1991) Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae, J. Bacteriol., 173, 7113–7125.

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Bardy, S. L., and Jarrell, K. F. (2002) FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity, FEMS Microbiol. Lett., 208, 53–59.

    Article  PubMed  CAS  Google Scholar 

  24. Bardy, S. L., and Jarrell, K. F. (2003) Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae, Mol. Microbiol., 50, 1339–1347.

    Article  PubMed  CAS  Google Scholar 

  25. Szabo, Z., Albers, S. V., and Driessen, A. J. M. (2006) Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus, J. Bacteriol., 188, 1437–1443.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Ng, S. Y., Chaban, B., and Jarrell, K. F. (2006) Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications, J. Mol. Microbiol. Biotechnol., 11, 167–191.

    Article  PubMed  CAS  Google Scholar 

  27. Tripepi, M., Imam, S., and Pohlschroder, M. (2010) Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion, J. Bacteriol., 192, 3093–3102.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Mukhopadhyay, B., Johnson, E. F., and Wolfe, R. S. (2000) A novel pH2 control on the expression of flagella in the hyperthermophilic strictly hydrogenotrophic methanarchaeaon Methanococcus jannaschii, Proc. Natl. Acad. Sci. USA, 97, 11522–11527.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Hendrickson, E. L., Liu, Y., Rosas-Sandoval, G., Porat, I., Soll, D., Whitman, W. B., and Leigh, J. A. (2008) Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate, J. Bacteriol., 190, 2198–2205.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Szabo, Z., Sani, M., Groeneveld, M., Zolghadr, B., Schelert, J., Albers, S. V., and Driessen, A. J. (2007) Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus, J. Bacteriol., 189, 4305–4309.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Reimann, J., Lassak, K., Khadouma, S., Ettema, T. J., Yang, N., Driessen, A. J., Klingl, A., and Albers, S. V. (2012) Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius, Mol. Microbiol., 86, 24–36.

    Article  PubMed  CAS  Google Scholar 

  32. Lassak, K., Peeters, E., Wrobel, S., and Albers, S. V. (2013) The one-component system ArnR: a membrane-bound activator of the crenarchaeal archaellum, Mol. Microbiol., 88, 125–139.

    Article  PubMed  CAS  Google Scholar 

  33. Thomas, A. N., Bardy, B. L., and Jarrell, K. F. (2001) The archaeal flagellum: a different kind of prokaryotic motility structure, FEMS Microbiol. Rev., 25, 147–174.

    Article  PubMed  CAS  Google Scholar 

  34. Kalmokoff, M. L., Jarrell, K. F., and Koval, S. F. (1988) Isolation of flagella from the archaebacterium Methanococcus voltae by phase separation with Triton X-114, J. Bacteriol., 170, 1752–1758.

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Cruden, D., Sparling, R., and Markovetz, A. J. (1989) Isolation and ultrastructure of the flagella of Methanococcus thermolithotrophicus and Methanospirillum hungatei, Appl. Environ. Microbiol., 55, 1414–1419.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Kupper, J., Marwan, W., Typke, D., Grunberg, H., Uwer, U., Gluch, M., and Oesterhelt, D. (1994) The flagellar bundle of Halobacterium salinarium is inserted into a distinct polar cap structure, J. Bacteriol., 176, 5184–5187.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Bakeeva, L. E., Metlina, A. L., Novikova, T. M., and Speransky, V. V. (1992) The ultrastructure of the flagellar apparatus of Halobacterium salinarium, Doklady Akad. Nauk, 326, 914–915.

    Google Scholar 

  38. Metlina, A. L. (2001) Prokaryotic flagella as biological motility system, Uspekhi Biol. Khim., 41, 229–282.

    CAS  Google Scholar 

  39. Metlina, A. L. (2004) Bacterial and archaeal flagella as prokaryotic motility organelles, Biochemistry (Moscow), 69, 1203–1212.

    Article  CAS  Google Scholar 

  40. Streif, S., Staudinger, W. F., Marwan, W., and Oesterhelt, D. (2008) Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP, J. Mol. Biol., 384, 1–8.

    Article  PubMed  CAS  Google Scholar 

  41. Reindl, S., Ghosh, A., Williams, G. J., Lassak, K., Neiner, T., Henche, A. L., Albers, S. V., and Tainer, J. A. (2013) Insights into FlaI functions in archaeal motor assembly and motility from structures, conformations, and genetics, Mol. Cell, 49, 1069–1082.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Banerjee, A., Neiner, T., Tripp, P., and Albers, S. V. (2013) Insights into subunit interactions in the Sulfolobus acidocaldarius archaellum cytoplasmic complex, FEBS J., 280, 6141–6149.

    Article  PubMed  CAS  Google Scholar 

  43. Cohen-Krausz, S., and Trachtenberg, S. (2002) The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili, J. Mol. Biol., 321, 383–395.

    Article  PubMed  CAS  Google Scholar 

  44. Trachtenberg, S., Galkin, V. E., and Egelman, E. H. (2005) Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism, J. Mol. Biol., 346, 665–676.

    Article  PubMed  CAS  Google Scholar 

  45. Cohen-Krausz, S., and Trachtenberg, S. (2008) The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archeabacterial flagella have a unique and common symmetry and design, J. Mol. Biol., 375, 1113–1124.

    Article  PubMed  CAS  Google Scholar 

  46. Kalmokoff, M. L., Karnauchow, T. M., and Jarrell, K. F. (1990) Conserved N-terminal sequences in the flagellins of archaebacterial, Biochem. Biophys. Res. Commun., 167, 154–160.

    Article  PubMed  CAS  Google Scholar 

  47. Bardy, S. L., Eichler, J., and Jarrell, K. F. (2003) Archaeal signal peptides — a comparative survey at the genome level, Protein Sci., 12, 1833–1843.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Tarasov, V. Y., Kostyukova, A. S., Tiktopulo, E. I., Pyatibratov, M. G., and Fedorov, O. V. (1995) Unfolding of tertiary structure of Halobacterium halobium flagellins does not result in flagella destruction, J. Protein Chem., 14, 27–31.

    Article  PubMed  CAS  Google Scholar 

  49. Pyatibratov, M. G., Kostyukova, A. S., Tarasov, V. Yu., and Fedorov, O. V. (1996) Some principles of formation of the haloalkaliphilic archaeal flagellar structure, Biochemistry (Moscow), 61, 1056–1062.

    Google Scholar 

  50. Calo, D., Kaminski, L., and Eichler, J. (2010) Protein glycosylation in Archaea: sweet and extreme, Glycobiology, 20, 1065–1076.

    Article  PubMed  CAS  Google Scholar 

  51. Mescher, M. F., and Strominger, J. L. (1976) Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium, J. Biol. Chem., 251, 2005–2014.

    PubMed  CAS  Google Scholar 

  52. Sumper, M. (1987) Halobacterial glycoprotein biosynthesis, Biochim. Biophys. Acta (BBA) — Rev. Biomembr., 906, 69–79.

    Article  CAS  Google Scholar 

  53. Tripepi, M., You, J., Temel, S., Onder, O., Brisson, D., and Pohlschroder, M. (2012) N-glycosylation of Haloferax volcanii flagellins requires known Agl proteins and is essential for biosynthesis of stable flagella, J. Bacteriol., 194, 4876–4887.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Meyer, B. H., and Albers, S. V. (2014) AglB catalyzing the oligosaccharyl transferase step of the archaeal N-glycosylation process is essential in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius, MicrobiologyOpen, 3, 531–543.

    Article  PubMed  CAS  Google Scholar 

  55. Guan, Z., Naparstek, S., Calo, D., and Eichler, J. (2012) Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation, Environ. Microbiol., 14, 743–753.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Wieland, F., Paul, G., and Sumper, M. (1985) Halobacterial flagellins are sulfated glycoproteins, J. Biol. Chem., 260, 15180–15185.

    PubMed  CAS  Google Scholar 

  57. Voisin, S., Houliston, R. S., Kelly, J., Brisson, J. R., Watson, D., Bardy, S. L., Jarrell, K. F., and Logan, S. M. (2005) Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae, J. Biol. Chem., 280, 16586–16593.

    Article  PubMed  CAS  Google Scholar 

  58. Kelly, J., Logan, S. M., Jarrell, K. F., Vandyke, D. J., and Vinogradov, E. (2009) A novel N-linked flagellar glycan from Methanococcus maripaludis, Carbohydr. Res., 344, 648–653.

    Article  PubMed  CAS  Google Scholar 

  59. Chaban, B., Voisin, S., Kelly, J., Logan, S. M., and Jarrell, K. F. (2006) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea, Mol. Microbiol., 61, 259–268.

    Article  PubMed  CAS  Google Scholar 

  60. Vandyke, D. J., Wu, J., Logan, S. M., Kelly, J. F., Mizuno, S., Aizawa, S. I., and Jarrell, K. F. (2009) Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis, Mol. Microbiol., 72, 633–644.

    Article  PubMed  CAS  Google Scholar 

  61. Gerl, L., and Sumper, M. (1988) Halobacterial flagellins are encoded by a multigene family. Characterization of five flagellin genes, J. Biol. Chem., 263, 13246–13251.

    PubMed  CAS  Google Scholar 

  62. Gerl, L., Deutzmann, R., and Sumper, M. (1989) Halobacterial flagellins are encoded by a multigene family Identification of all five gene products, FEBS Lett., 244, 137–140.

    Article  PubMed  CAS  Google Scholar 

  63. Tarasov, V. Y., Pyatibratov, M. G., Tang, S. L., Dyall-Smith, M., and Fedorov, O. V. (2000) Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum, Mol. Microbiol., 35, 69–78.

    Article  PubMed  CAS  Google Scholar 

  64. Tarasov, V. Y., Pyatibratov, M. G., Beznosov, S. N., and Fedorov, O. V. (2004) On the supramolecular organization of the flagellar filament in Archaea, Doklady Biochem. Biophys., 396, 203–205.

    Article  CAS  Google Scholar 

  65. Pyatibratov, M. G., Leonard, K., Tarasov, V. Y., and Fedorov, O. V. (2002) Two immunologically distinct types of protofilaments can be identified in Natrialba magadii flagella, FEMS Microbiol. Lett., 212, 23–27.

    Article  PubMed  CAS  Google Scholar 

  66. Beznosov, S. N., Pyatibratov, M. G., and Fedorov, O. V. (2007) On the multicomponent nature of Halobacterium salinarum flagella, Microbiology (Moscow), 76, 435–441.

    Article  CAS  Google Scholar 

  67. Beznosov, S. N., Pyatibratov, M. G., and Fedorov, O. V. (2009) Archaeal flagella as matrices for new nanomaterials, Nanotechnol. Russia, 4, 373–378.

    Article  Google Scholar 

  68. Beznosov, S. N., Pyatibratov, M. G., Veluri, P. S., Mitra, S., and Fedorov, O. V. (2013) A way to identify archaellins in Halobacterium salinarum archaella by FLAG-tagging, Centr. Europ. J. Biol., 8, 828–834.

    Article  CAS  Google Scholar 

  69. Lewus, P., and Ford, R. M. (1999) Temperature-sensitive motility of Sulfolobus acidocaldarius influences population distribution in extreme environments, J. Bacteriol., 181, 4020–4025.

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Baliga, N. S., Bonneau, R., Facciotti, M. T., Pan, M., Glusman, G., Deutsch, E. W., and Ng, W. V. (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea, Genome Res., 14, 2221–2234.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Oren, A., Ginzburg, M., Ginzburg, B. Z., Hochstein, L. I., and Volcani, B. E. (1990) Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea, Int. J. System. Bacteriol., 40, 209–210.

    Article  CAS  Google Scholar 

  72. Pyatibratov, M. G., Beznosov, S. N., Rachel, R., Tiktopulo, E. I., Surin, A. K., Syutkin, A. S., and Fedorov, O. V. (2008) Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui, Canad. J. Microbiol., 54, 835–844.

    Article  CAS  Google Scholar 

  73. Matagne, A., Joris, B., and Frere, J. M. (1991) Anomalous behavior of a protein during SDS/PAGE corrected by chemical modification of carboxylic groups, Biochem. J., 280, 553–556.

    PubMed Central  PubMed  CAS  Google Scholar 

  74. Ikeda, J. S., Schmitt, C. K., Darnell, S. C., Watson, P. R., Bispham, J., Wallis, T. S., and O’Brien, A. D. (2001) Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis, Infect. Immun., 69, 3021–3030.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Syutkin, A. S., Pyatibratov, M. G., Galzitskaya, O. V., Rodriguez-Valera, F., and Fedorov, O. V. (2014) Haloarcula marismortui archaellin genes as ecoparalogs, Extremophiles, 18, 341–349.

    Article  PubMed  Google Scholar 

  76. Syutkin, A. S., Pyatibratov, M. G., Beznosov, S. N., and Fedorov, O. V. (2012) Various mechanisms of flagella helicity formation in haloarchaea, Microbiology (Moscow), 81, 573–581.

    Article  CAS  Google Scholar 

  77. Valliere-Douglass, J. F., Eakin, C. M., Wallace, A., Ketchem, R. R., Wang, W., Treuheit, M. J., and Balland, A. (2010) Glutamine-linked and non-consensus asparagine-linked oligosaccharides present in human recombinant antibodies define novel protein glycosylation motifs, J. Biol. Chem., 285, 16012–16022.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Franzmann, P. D., Stackebrandt, E., Sanderson, K., Volkman, J. K., Cameron, D. E., Stevenson, P. L., and Burton, H. R. (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica, System. Appl. Microbiol., 11, 20–27.

    Article  CAS  Google Scholar 

  79. Tu, D., Blaha, G., Moore, P. B., and Steitz, T. A. (2005) Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted, Extremophiles, 9, 427–435.

    Article  PubMed  CAS  Google Scholar 

  80. Lopez-Lopez, A., Benlloch, S., Bonfa, M., Rodriguez-Valera, F., and Mira, A. (2007) Intragenomic 16S rDNA divergence in Haloarcula marismortui is an adaptation to different temperatures, J. Mol. Evol., 65, 687–696.

    Article  PubMed  CAS  Google Scholar 

  81. Sanchez-Perez, G., Mira, A., Nyiro, G., Pasic, L., and Rodriguez-Valera, F. (2008) Adapting to environmental changes using specialized paralogs, Trends Genet., 24, 154–158.

    Article  PubMed  CAS  Google Scholar 

  82. Bodaker, I., Sharon, I., Suzuki, M. T., Feingersch, R., Shmoish, M., Andreishcheva, E., Sogin, M. L., Rosenberg, M., Maguire, M. E., Belkin, S., Oren, A., and Beja, O. (2010) Comparative community genomics in the Dead Sea: an increasingly extreme environment, ISME J., 4, 399–407.

    Article  PubMed  Google Scholar 

  83. Williams, D., Gogarten, J. P., and Papke, R. T. (2012) Quantifying homologous replacement of loci between haloarchaeal species, Genome Biol. Evol., 4, 1223–1244.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Allers, T., Barak, S., Liddell, S., Wardell, K., and Mevarech, M. (2010) Improved strains and plasmid vectors for conditional overexpression of His-tagged proteins in Haloferax volcanii, Appl. Environ. Microbiol., 76, 1759–1769.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Deutscher, L., Renner, L. D., and Cuniberti, G. (2014) Flagella — templates for the synthesis of metallic nanowires, IFMBE Proc., 41, 860–863.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. Pyatibratov or O. V. Fedorov.

Additional information

Original Russian Text © A. S. Syutkin, M. G. Pyatibratov, O. V. Fedorov, 2014, published in Uspekhi Biologicheskoi Khimii, 2014, Vol. 54, pp. 103–132.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syutkin, A.S., Pyatibratov, M.G. & Fedorov, O.V. Flagella of halophilic archaea: Differences in supramolecular organization. Biochemistry Moscow 79, 1470–1482 (2014). https://doi.org/10.1134/S0006297914130033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914130033

Key words

Navigation