Skip to main content
Log in

Intragenomic 16S rDNA Divergence in Haloarcula marismortui Is an Adaptation to Different Temperatures

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The halophilic archaeon Haloarcula marismortui contains three ribosomal RNA operons, designated rrnA, rrnB, and rrnC. Operons A and C are virtually identical, whereas operon B presents a high divergence in nucleotide sequence, having up to 135 nucleotide polymorphisms among the three 16S, 23S, and 5S ribosomal RNA genes. Quantitative PCR and structural analyses have been performed to elucidate whether the presence of this intragenomic heterogeneity could be an adaptation to the variable environmental conditions in the natural habitat of H. marismortui. Variation in salt concentration did not affect expression but variation in incubation temperature did produce significant changes, with operon B displaying an expression level four times higher than the other two together at 50°C and three times lower at 15°C. We show that the putative promoter region of operon B is also different. In addition, the predicted secondary structure of these genes indicated that they have distinct stabilities at different temperatures and a mutant strain lacking operon B grew slower at high temperatures. This study supports the idea that divergent rRNA genes can be adaptive, with different variants being functional under different environmental conditions (e.g., temperature). The same phenomenon could take place in other halophiles or thermophiles with intragenomic rDNA heterogeneity, where the use of 16S rDNA as a phylogenetic marker and indicator of biodiversity should be used with caution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186:2629–2635

    Article  PubMed  CAS  Google Scholar 

  • Amann G, Stetter KO, Llobet-Brossa E, Amann R, Anton J (2000) Direct proof for the presence and expression of two 5% different 16S rRNA genes in individual cells of Haloarcula marismortui. Extremophiles 4:373–376

    Article  PubMed  CAS  Google Scholar 

  • Arndt E, Kromer W, Hatakeyama T (1990) Organization and nucleotide sequence of a gene cluster coding for eight ribosomal proteins in the archaebacterium Halobacterium marismortui. J Biol Chem 265:3034–3039

    PubMed  CAS  Google Scholar 

  • Asai T, Zaporojets D, Squires C, Squires CL (1999) An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci USA 96:1971–1976

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    Article  PubMed  CAS  Google Scholar 

  • Baliga NS, DasSarma S (1999) Saturation mutagenesis of the TATA box and upstream activator sequence in the haloarchaeal bop gene promoter. J Bacteriol 181:2513–2518

    PubMed  CAS  Google Scholar 

  • Bao Q, Tian Y, Li W, Xu Z, Xuan Z, Hu S, Dong W, Yang J, Chen Y, Xue Y, Xu Y, Lai X, Huang L, Dong X, Ma Y, Ling L, Tan H, Chen R, Wang J, Yu J, Yang H (2002) A complete sequence of the T. tengcongensis genome. Genome Res 12:689–700

    Article  PubMed  CAS  Google Scholar 

  • Bonete MJ, Perez-Pomares F, Diaz S, Ferrer J, Oren A (2003) Occurrence of two different glutamate dehydrogenase activities in the halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 226:181–186

    Article  PubMed  CAS  Google Scholar 

  • Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF (2004) Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186:3980–3990

    Article  PubMed  CAS  Google Scholar 

  • Brochier C, Philippe H (2002) Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417:244

    Article  PubMed  CAS  Google Scholar 

  • Clayton RA, Sutton G, Hinkle PS Jr, Bult C, Fields C (1995) Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol 45:595–599

    PubMed  CAS  Google Scholar 

  • Coenye T, Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228:45–49

    Article  PubMed  CAS  Google Scholar 

  • Condon C, Squires C, Squires CL (1995) Control of rRNA transcription in Escherichia coli. Microbiol Rev 59:623–645

    PubMed  CAS  Google Scholar 

  • Dennis PP, Ziesche S, Mylvaganam S (1998) Transcription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui. J Bacteriol 180:4804–4813

    PubMed  CAS  Google Scholar 

  • Eleaume H, Jabbouri S (2004) Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J Microbiol Methods 59:363–370

    Article  PubMed  CAS  Google Scholar 

  • Fitzmaurice J, Glennon M, Duffy G, Sheridan JJ, Carroll C, Maher M (2004) Application of real-time PCR and RT-PCR assays for the detection and quantitation of VT 1 and VT 2 toxin genes in E. coli O157:H7. Mol Cell Probes 18:123–132

    Article  PubMed  CAS  Google Scholar 

  • Garret RA, Aagaard C, Andersen M, Dalgaard JZ, Lykke-Andersen J, Phan HTN, Trevisanato S, Østergaard L, Larsen N, Leffers H (1994) Archaeal rRNA operons, intron splicing and homing endonucleases, RNA polymerase operons and phylogeny. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Green R, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem 66:679–716

    Article  PubMed  CAS  Google Scholar 

  • Gunderson JH, Sogin ML, Wollett G, Hollingdale M, de la Cruz VF, Waters AP, McCutchan TF (1987) Structurally distinct, stage-specific ribosomes occur in Plasmodium. Science 238:933–937

    Article  PubMed  CAS  Google Scholar 

  • Hamacher K, Trylska J, McCammon JA (2006) Dependency map of proteins in the small ribosomal subunit. PLoS Comput Biol 2:e10

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  PubMed  CAS  Google Scholar 

  • Karlen Y, McNair A, Perseguers S, Mazza C, Mermod N (2007) Statistical significance of quantitative PCR. BMC Bioinformatics 8:131–146

    Article  PubMed  CAS  Google Scholar 

  • Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of bacteria. Appl Environ Microbiol 66:1328–1333

    Article  PubMed  CAS  Google Scholar 

  • Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH (2007) The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol 73:838–845

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Murcia AJ, Anton AI, Rodriguez-Valera F (1999) Patterns of sequence variation in two regions of the 16S rRNA multigene family of Escherichia coli. Int J Syst Bacteriol 49:601–610

    Article  PubMed  CAS  Google Scholar 

  • Matzura O, Wennborg A (1996) RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci 12:247–249

    PubMed  CAS  Google Scholar 

  • Mevarech M, Hirsch-Twizer S, Goldman S, Yakobson E, Eisenberg H, Dennis PP (1989) Isolation and characterization of the rRNA gene clusters of Halobacterium marismortui. J Bacteriol 171:3479–3485

    PubMed  CAS  Google Scholar 

  • Mira A, Pushker R (2007) Evolution of genome architecture and the evolution of bacterial pathogens. In: Baquero F, Nombela C, Cassell GH (eds) Introduction to evolutionary biology of bacterial and fungal pathogens. ASM Press, Washington, DC, Chap 13

    Google Scholar 

  • Mongodin EF, Nelson KE, Daugherty S, Deboy RT, Wister J, Khouri H, Weidman J, Walsh DA, Papke RT, Sanchez Perez G, Sharma AK, Nesbo CL, MacLeod D, Bapteste E, Doolittle WF, Charlebois RL, Legault B, Rodriguez-Valera F (2005) The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA 102:18147–18152

    Article  PubMed  CAS  Google Scholar 

  • Mylvaganam S, Dennis PP (1992) Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130:399–410

    PubMed  CAS  Google Scholar 

  • Pronk LM, Sanderson KE (2001) Intervening sequences in rrl genes and fragmentation of 23S rRNA in genera of the family Enterobacteriaceae. J Bacteriol 183:5782–5787

    Article  PubMed  CAS  Google Scholar 

  • Pushker R, Mira A, Rodriguez-Valera F (2004) Comparative genomics of gene-family size in closely related bacteria. Genome Biol 5:R27

    Article  PubMed  Google Scholar 

  • Robinson JL, Pyzyna B, Atrasz RG, Henderson CA, Morrill KL, Burd AM, Desoucy E, Fogleman RE 3rd, Naylor JB, Steele SM, Elliott DR, Leyva KJ, Shand RF (2005) Growth kinetics of extremely halophilic archaea (family halobacteriaceae) as revealed by arrhenius plots. J Bacteriol 187:923–929

    Article  PubMed  CAS  Google Scholar 

  • Soppa J (2005) From replication to cultivation: hot news from Haloarchaea. Curr Opin Microbiol 8:737–744

    Article  PubMed  CAS  Google Scholar 

  • Stetter KO (1996) Hyperthermophiles in the history of life. CIBA Found Symp 202:1–10

    PubMed  CAS  Google Scholar 

  • Torarinsson E, Klenk HP, Garrett RA (2005) Divergent transcriptional and translational signals in Archaea. Environ Microbiol 7:47–54

    Article  PubMed  CAS  Google Scholar 

  • Tu D, Blaha G, Moore PB, Steitz TA (2005) Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted. Extremophiles 9:427–435

    Article  PubMed  CAS  Google Scholar 

  • Turner DH, Sugimoto N, Jaeger JA, Longfellow CE, Freier SM, Kierzek R (1987) Improved parameters for prediction of RNA structure. Cold Spring Harb Symp Quant Biol 52:123–133

    PubMed  CAS  Google Scholar 

  • Weinberg MV, Schut GJ, Brehm S, Datta S, Adams MW (2005) Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J Bacteriol 187:336–348

    Article  PubMed  CAS  Google Scholar 

  • Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    Article  PubMed  CAS  Google Scholar 

  • Yang CF, Kim JM, Molinari E, DasSarma S (1996) Genetic and topological analyses of the bop promoter of Halobacterium halobium: stimulation by DNA supercoiling and non-B-DNA structure. J Bacteriol 178:840–845

    PubMed  CAS  Google Scholar 

  • Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181:5201–5209

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the MIRACLE (EVK3-2002-00087) and GEMINI (QLK3-CT-2002-02056) projects of the European Commission. A.M. is funded by a Ramón y Cajal contract from the Ministry of Science and Technology and M.B. by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil). We thank P. B. Moore for kindly providing the mutant strains DT29, DT38, and DT41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-López, A., Benlloch, S., Bonfá, M. et al. Intragenomic 16S rDNA Divergence in Haloarcula marismortui Is an Adaptation to Different Temperatures. J Mol Evol 65, 687–696 (2007). https://doi.org/10.1007/s00239-007-9047-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-007-9047-3

Keywords

Navigation