Skip to main content
Log in

Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Site-directed mutagenesis were done in Haloarcula marismortui using the strategy that Khorana and coworkers devised for deleting the bacteriorhodopsin gene from Halobacterium halobium [Krebs et al. Proc Natl Acad Sci USA 90:1987–1991 (1993)]. Strains have been prepared from H. marsimortui, which normally has three rRNA operons, that are missing either its rrnB operon or both its rrnB and rrnC operons. In rich media, both strains grow at about the same rate as wild type. The G2099 in the 23S rRNA gene of the single operon strain was changed to A, and a three amino acid deletion was introduced into the gene for ribosomal protein L22 of the wild-type organism. The structural consequences of these and other such mutations can be determined with unusual accuracy because crystals of the large ribosomal subunit of H. marismortui diffract to atomic resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

rrnA:

ribosomal RNA operon A

rrnB:

ribosomal RNA operon B

rrnC:

ribosomal RNA operon C

rRNA:

ribosomal RNA

Mevr:

Mevinolin resistant

References

  • Arndt E (1990) Nucleotide sequence of four genes encoding ribosomal proteins from the ‘S10 and spectinomycin’ operon equivalent region in the archaebacterium Halobacterium marismortui. FEBS Lett 267:193–198

    Article  CAS  PubMed  Google Scholar 

  • Arndt E (1992) The genes for ribosomal protein L15 and the protein equivalent to secY in the archaebacterium Haloarcula (Halobacterium) marismortui. Biochim Biophys Acta 1130:113–116

    CAS  PubMed  Google Scholar 

  • Arndt E, Kromer W, Hatakeyama T (1990) Organization and nucleotide sequence of a gene cluster coding for eight ribosomal proteins in the archaebacterium Halobacterium marismortui. J Biol Chem 265:3034–3039

    CAS  PubMed  Google Scholar 

  • Arndt E, Weigel C (1990) Nucleotide sequence of the genes encoding the L11, L1, L10 and L12 equivalent ribosomal proteins from the archaebacterium Halobacterium marismortui. Nucleic Acids Res 18:1285

    CAS  PubMed  Google Scholar 

  • Baliga NS, Bonneau R, Facciotti MT, Pan M, Glusman G, Deutsch EW, Shannon P, Chiu Y, Weng RS, Gan RR, Hung P, Date SV, Marcotte E, Hood L, Ng WV (2004) Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234

    Article  CAS  PubMed  Google Scholar 

  • Ban N, Freeborn B, Nissen P, Penczek P, Grassucci RA, Sweet R, Frank J, Moore PB, Steitz TA (1998) A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell 93:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Gen Genet 168:111–115

    Article  CAS  PubMed  Google Scholar 

  • Charlebois RL, Lam WL, Cline SW, Doolittle WF (1987) Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci USA 84:8530–8534

    Google Scholar 

  • Chittum HS, Champney WS (1994) Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J Bacteriol 176:6192–6198

    CAS  PubMed  Google Scholar 

  • Cline SW, Doolittle WF (1987) Efficient transfection of the archaebacterium Halobacterium halobium. J Bacteriol 169:1341–1344

    Google Scholar 

  • Cline SW, Doolittle WF (1992) Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J Bacteriol 174:1076–1080

    CAS  PubMed  Google Scholar 

  • Cline SW, Lam WL, Charlebois RL, Schalkwyk LC, Doolittle WF (1989) Transformation methods for halophilic archaebacteria. Can J Microbiol 35:148–152

    CAS  PubMed  Google Scholar 

  • Dennis PP, Ziesche S, Mylvaganam S (1998) Transcription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui. J Bacteriol 180:4804–4813

    CAS  PubMed  Google Scholar 

  • Dyall-Smith M (2003) The Halohandbook: protocols for halobacterial genetics. http://www.microbiol.unimelb.edu.au/staff/mds/HaloHandbook/ (accessed March 2005)

    Google Scholar 

  • Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA (2002) The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 10:117–128

    Google Scholar 

  • Kita T, Brown MS, Goldstein JL (1980) Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest 66:1094–1100

    CAS  PubMed  Google Scholar 

  • Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341

    Article  CAS  PubMed  Google Scholar 

  • Kraft A, Lutz C, Lingenhel A, Grobner P, Piendl W (1999) Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea. Genetics 152:1363–1372

    CAS  PubMed  Google Scholar 

  • Krebs MP, Mollaaghababa R, Khorana HG (1993) Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants. Proc Natl Acad Sci USA 90:1987–1991

    CAS  PubMed  Google Scholar 

  • Lam WL, Doolittle WF (1989) Shuttle vectors for the archaebacterium Halobacterium volcanii. Proc Natl Acad Sci USA 86:5478–5482

    CAS  PubMed  Google Scholar 

  • Mevarech M, Hirsch-Twizer S, Goldman S, Yakobson E, Eisenberg H, Dennis PP (1989) Isolation and characterization of the rRNA gene clusters of Halobacterium marismortui. J Bacteriol 171:3479–3485

    CAS  PubMed  Google Scholar 

  • Ramírez C, Köpke AKE, Yang D-C, Boeckh T, Matheson AT (1993) The structure, function and evolution of archaeal ribosomes. In: Kates M, Kushner DJ, Matheson AT (eds) The biochemistry of archaea (archaebacteria), vol 26. Elsevier Science Publishers BV, Amsterdam, The Netherlands, pp439–466

  • Scholzen T, Arndt E (1991) Organization and nucleotide sequence of ten ribosomal protein genes from the region equivalent to the spectinomycin operon in the archaebacterium Halobacterium marismortui. Mol Gen Genet 228:70–80

    Article  CAS  PubMed  Google Scholar 

  • Stern S, Moazed D, Noller HF (1988) Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. In: Harry F, Noller J, Moldave K (eds) Methods in enzymology, vol 164. Academic Press Inc., San Diego, pp 481–489

  • Tu D, Blaha G, Moore PB, Steitz TA (2005) Structures of MLS B K antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell 121:257–270

    Article  CAS  PubMed  Google Scholar 

  • Unge J, berg A, Al-Kharadaghi S, Nikulin A, Nikonov S, Davydova N, Nevskaya N, Garber M, Liljas A (1998) The crystal structure of ribosomal protein L22 from Thermus thermophilus: insights into the mechanism of erythromycin resistance. Structure 6:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Weisblum B (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39:577–585

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Ford Doolittle for providing pWL102, and Patrick P. Dennis for providing pHC8 and pHH10. Sequences from H. marismortui found at (http://zdna2.umbi.umd.edu, Version 2) were used in designing the rrnC knockout construct. This research was supported by National Institutes of Health grant GM022778 to T.A.S. and P.B.M., by a grant from the Agouron Institute to T.A.S. and P.B.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Moore.

Additional information

Communicated by J.N. Reeve

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tu, D., Blaha, G., Moore, P.B. et al. Gene replacement in Haloarcula marismortui: construction of a strain with two of its three chromosomal rRNA operons deleted. Extremophiles 9, 427–435 (2005). https://doi.org/10.1007/s00792-005-0459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0459-y

Keywords

Navigation