Skip to main content

Structure and Assembly of the Bacterial Flagellum

  • Chapter
  • First Online:
Macromolecular Protein Complexes IV

Part of the book series: Subcellular Biochemistry ((SCBI,volume 99))

Abstract

The bacterial flagellum is a large macromolecular assembly that acts as propeller, providing motility through the rotation of a long extracellular filament. It is composed of over 20 different proteins, many of them highly oligomeric. Accordingly, it has attracted a huge amount of interest amongst researchers and the wider public alike. Nonetheless, most of its molecular details had long remained elusive.

This however has changed recently, with the emergence of cryo-EM to determine the structure of protein assemblies at near-atomic resolution. Within a few years, the atomic details of most of the flagellar components have been elucidated, revealing not only its overall architecture but also the molecular details of its rotation mechanism. However, many questions remained unaddressed, notably on the complexity of the assembly of such an intricate machinery.

In this chapter, we review the current state of our understanding of the bacterial flagellum structure, focusing on the recent development from cryo-EM. We also highlight the various elements that still remain to be fully characterized. Finally, we summarize the existing model for flagellum assembly and discuss some of the outstanding questions that are still pending in our understanding of the diversity of assembly pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizawa S (2012a) Rebuttal: flagellar hook length is controlled by a secreted molecular ruler. J Bacteriol 194:4797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aizawa S (2012b) Mystery of FliK in length control of the flagellar hook Shin-Ichi. J Bacteriol 194:4798–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiba T, Yoshimura H, Namba K (1991) Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid. Science (80-) 252:1544–1546

    Article  CAS  Google Scholar 

  • Allison SE, Tuinema BR, Everson ES, Sugiman-Marangos S, Zhang K, Junop MS, Coombes BK (2014) Identification of the docking site between a type III secretion system ATPase and a chaperone for effector cargo. J Biol Chem 289:23734–23744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Otaibi NS, Taylor AJ, Farrell DP, Tzokov SB, DiMaio F, Kelly DJ, Bergeron JRC (2020) The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation. Nat Commun 11:3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo-Pérez EE, Ringgaard S (2021) Interdependent polar localization of FlhF and FlhG and their importance for flagellum formation of Vibrio parahaemolyticus. Front Microbiol 12:1–12

    Article  Google Scholar 

  • Bai F, Morimoto YV, Yoshimura SDJ, Hara N, Kami-Ike N, Namba K, Minamino T (2014) Assembly dynamics and the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci Rep 4:1–7

    Article  Google Scholar 

  • Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 113:E2759

    Article  Google Scholar 

  • Berg HC (1974) Dynamic properties of bacterial flagellar motors. Nature 249:77–79

    Article  CAS  PubMed  Google Scholar 

  • Bergeron JR (2016) Structural modeling of the flagellum MS ring protein FliF reveals similarities to the type III secretion system and sporulation complex. PeerJ 4:e1718

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C, Konto-ghiorghi Y, Merieau A (2021) Pseudomonas flagella: generalities and specificities. Int J Mol Sci 22:1–28

    Article  Google Scholar 

  • Brown PN, Mathews MAA, Joss LA, Hill CP, Blair DF (2005) Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. J Bacteriol 187:2890–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrage AM, Vanderpool E, Kearns DB (2018) Assembly order of flagellar rod subunits in Bacillus subtilis. J Bacteriol 200:1–13

    Article  Google Scholar 

  • Chaban B, Coleman I, Beeby M (2018) Evolution of higher torque in campylobacter-type bacterial flagellar motors. Sci Rep 8:1–11

    Article  CAS  Google Scholar 

  • Chang Y, Xu H, Motaleb MA, Liu J (2021) Characterization of the flagellar collar reveals structural plasticity essential for spirochete motility. MBio 12. https://doi.org/10.1128/mBio.02494-21

  • Cho SY, Song WS, Hong HJ, Lee GS, Kang SG, Ko HJ, Kim PH, Yoon SI (2017) Tetrameric structure of the flagellar cap protein FliD from Serratia marcescens. Biochem Biophys Res Commun 489(1):63–69

    Article  CAS  PubMed  Google Scholar 

  • Chu J, Liu J, Hoover TR (2020) Phylogenetic distribution, ultrastructure, and function of bacterial flagellar sheaths. Biomolecules 10(3):1–15

    Article  Google Scholar 

  • Cohen EJ, Hughes KT (2014) Rod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring-dependent rod scaffold removal. J Bacteriol 196:2387–2395

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen EJ, Nakane D, Kabata Y, Hendrixson DR, Nishizaka T, Beeby M (2020) Campylobacter jejuni motility integrates specialized cell shape, flagellar filament, and motor, to coordinate action of its opposed flagella. PLoS Pathog 16:1–24

    Article  Google Scholar 

  • Courtney CR, Cozy LM, Kearns DB (2012) Molecular characterization of the flagellar hook in Bacillus subtilis. J Bacteriol 194:4619–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das C, Mokashi C, Mande SS, Saini S (2018) Dynamics and control of flagella assembly in Salmonella typhimurium. Front Cell Infect Microbiol 8:1–13

    Article  Google Scholar 

  • Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, Ramphal R (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50:809–824

    Article  CAS  PubMed  Google Scholar 

  • Debell C (1958) Antony van Leeuwenhoek and his “Little Animals”. Russell & Russell, New York

    Google Scholar 

  • de Silva YRO, Contreras-Martel C, Macheboeuf P, Dessen A (2020) Bacterial secretins: mechanisms of assembly and membrane targeting. Protein Sci 29:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, Berry RM, Leake MC, Armitage JP (2010) Signal-dependent turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci U S A 107:11347–11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deme JC, Johnson S, Vickery O, Muellbauer A, Monkhouse H, Griffiths T, James RH, Berks BC, Coulton JW, Stansfeld PJ et al (2020) Structures of the stator complex that drives rotation of the bacterial flagellum. Nat Microbiol 5:1553–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diepold A, Wiesand U, Cornelis GR (2011) The assembly of the export apparatus (YscR,S,T,U,V) of the Yersinia type III secretion apparatus occurs independently of other structural components and involves the formation of an YscV oligomer. Mol Microbiol 82:502–514

    Article  PubMed  Google Scholar 

  • dos Santos RN, Khan S, Morcos F (2018) Characterization of C-ring component assembly in flagellar motors from amino acid coevolution. R Soc Open Sci 5(5):171854

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckhard U, Bandukwala H, Mansfield MJ, Marino G, Cheng J, Wallace I, Holyoak T, Charles TC, Austin J, Overall CM et al (2017) Discovery of a proteolytic flagellin family in diverse bacterial phyla that assembles enzymatically active flagella. Nat Commun 8:521

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabiani FD, Renault TT, Peters B, Dietsche T, Gálvez EJC, Guse A, Freier K, Charpentier E, Strowig T, Franz-Wachtel M et al (2017) A flagellum-specific chaperone facilitates assembly of the core type III export apparatus of the bacterial flagellum. PLoS Biol 15:1–24

    Article  Google Scholar 

  • Ferreira JL, Gao FZ, Rossmann FM, Nans A, Brenzinger S, Hosseini R, Wilson A, Briegel A, Thormann KM, Rosenthal PB et al (2019) Γ-Proteobacteria eject their polar flagella under nutrient depletion, retaining flagellar motor relic structures. PLoS Biol 17:1–25

    Article  Google Scholar 

  • Ferris HU, Minamino T (2006) Flipping the switch: bringing order to flagellar assembly. Trends Microbiol 14:519–526

    Article  CAS  PubMed  Google Scholar 

  • Ferris HU, Furukawa Y, Minamino T, Kroetz MB, Kihara M, Namba K, Macnab RM (2005) FlhB regulates ordered export of flagellar components via autocleavage mechanism. J Biol Chem 280:41236–41242

    Article  CAS  PubMed  Google Scholar 

  • Fujii T, Kato T, Hiraoka KD, Miyata T, Minamino T, Chevance FFV, Hughes KT, Namba K (2017) Identical folds used for distinct mechanical functions of the bacterial flagellar rod and hook. Nat Commun 8:1–10

    Article  Google Scholar 

  • Fukumura T, Makino F, Dietsche T, Kinoshita M, Kato T, Wagner S, Namba K, Imada K, Minamino T (2017) Assembly and stoichiometry of the core structure of the bacterial flagellar type III export gate complex. PLoS Biol 15:1–22

    Article  Google Scholar 

  • Galkin VE, Yu X, Bielnicki J, Heuser J, Ewing CP, Guerry P, Egelman EH (2008) Divergence of quaternary structures among bacterial flagellar filaments. Science (80-) 320:382–385

    Article  CAS  Google Scholar 

  • Gibson KH, Trajtenberg F, Wunder EA, Brady MR, San Martin F, Mechaly A, Shang Z, Liu J, Picardeau M, Ko A et al (2020) An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. elife 9:1–24

    Article  Google Scholar 

  • Gourlay LJ, Thomas RJ, Peri C, Conchillo-Solé O, Ferrer-Navarro M, Nithichanon A, Vila J, Daura X, Lertmemongkolchai G, Titball R et al (2015) From crystal structure to in silico epitope discovery in the Burkholderia pseudomallei flagellar hook-associated protein FlgK. FEBS J 282:1319–1333

    Article  CAS  PubMed  Google Scholar 

  • Gulbronson CJ, Ribardo DA, Balaban M, Knauer C, Bange G, Hendrixson DR (2016) FlhG employs diverse intrinsic domains and influences FlhF GTPase activity to numerically regulate polar flagellar biogenesis in Campylobacter jejuni. Mol Microbiol 99:291–306

    Article  CAS  PubMed  Google Scholar 

  • Halte M, Erhardt M (2021) Protein export via the type iii secretion system of the bacterial flagellum. Biomolecules 11:1–19

    Article  Google Scholar 

  • Hendrixson DR, DiRita VJ (2003) Transcription of σ54-dependent but not σ 28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol Microbiol 50:687–702

    Article  CAS  PubMed  Google Scholar 

  • Hirano T, Minamino T, Macnab RM (2001) The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific Muramidase. J Mol Biol 312:359–369

    Article  CAS  PubMed  Google Scholar 

  • Homma M, Kutsukake K, Hasebe M, Iino T, Macnab RM (1990) FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J Mol Biol 211:465–477

    Article  CAS  PubMed  Google Scholar 

  • Hong HJ, Kim TH, Song WS, Ko HJ, Lee GS, Kang SG, Kim PH, Yoon S (2018) Crystal structure of FlgL and its implications for flagellar assembly. Sci Rep 8:1–11

    Article  Google Scholar 

  • Hughes KT (2012a) Flagellar hook length is controlled by a secreted molecular ruler Kelly. J Bacteriol 194:4793–4796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes KT (2012b) Rebuttal:Mystery of FliK in Length Control of the Flagellar Hook Kelly. J Bacteriol 194:4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikebe T, Iyoda S, Kutsukake K (1999) Promoter analysis of the class 2 flagellar operons of Salmonella. Genes Genet Syst 74:179–183

    Article  CAS  PubMed  Google Scholar 

  • Ikeda T, Yamaguchi S, Hotani H (1993) Flagellar growth in a filament-less Salmonella fliD mutant supplemented with purified hook-associated protein 2. J Biochem 114:39–44

    Article  CAS  PubMed  Google Scholar 

  • Imada K (2018) Bacterial flagellar axial structure and its construction. Biophys Rev 10:559–570

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Minamino T, Uchida Y, Kinoshita M, Namba K, DeRosier D (2016) Insight into the flagella type III export revealed by the complex structure of the type III ATPase and its regulator. Proc Natl Acad Sci U S A 113:3633–3638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson S, Furlong EJ, Deme JC, Nord AL, Caesar J, Chevance FFV, Berry RM, Hughes KT, Lea SM (2021) Molecular structure of the intact bacterial flagellar basal body. Nat Microbiol 6:712–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan M, Subramanian P, Ghosal D, Oikonomou CM, Pirbadian S, Starwalt-Lee R, Mageswaran SK, Ortega DR, Gralnick JA, El-Naggar MY et al (2019) In situ imaging of the bacterial flagellar motor disassembly and assembly processes. EMBO J 38:1–12

    Article  Google Scholar 

  • Kaplan M, Sweredoski MJ, Rodrigues JPGLM, Tocheva EI, Chang YW, Ortega DR, Beeby M, Jensen GJ (2020) Bacterial flagellar motor PL-ring disassembly subcomplexes are widespread and ancient. Proc Natl Acad Sci U S A 117:8941–8947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kato T, Makino F, Miyata T, Horváth P (2019) Structure of the native supercoiled flagellar hook as a universal joint. Nat Commun 10(1):1–17

    Article  Google Scholar 

  • Kojima S, Shinohara A, Terashima H, Yakushi T, Sakuma M, Homma M, Namba K, Imada K (2008) Insights into the stator assembly of the vibrio flagellar motor from the crystal structure of MotY. Proc Natl Acad Sci U S A 105:7696–7701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima S, Takao M, Almira G, Kawahara I, Sakuma M, Homma M, Kojima C, Imada K (2018) The helix rearrangement in the periplasmic domain of the flagellar stator B subunit activates peptidoglycan binding and ion influx. Structure 26:590–598.e5

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberger MAB, Ewing C, Poly F, Wang F, Egelman EH (2020) Atomic structure of the Campylobacter jejuni flagellar filament reveals how e Proteobacteria escaped toll-like receptor 5 surveillance. Proc Natl Acad Sci U S A 117:16985–16991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubori T, Shimamoto N, Yamaguchi S, Namba K, Aizawa SI (1992) Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol 226:433–446

    Article  CAS  PubMed  Google Scholar 

  • Kubori T, Yamaguchi S, Aizawa SI (1997) Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins. J Bacteriol 179:813–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlen L, Abrusci P, Johnson S, Gault J, Deme J, Caesar J, Dietsche T, Mebrhatu MT, Ganief T, Macek B et al (2018) Structure of the core of the type iii secretion system export apparatus. Nat Struct Mol Biol 25:583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlen L, Johnson S, Zeitler A, Bäurle S, Deme JC, Caesar JJE, Debo R, Fisher J, Wagner S, Lea SM (2020) The substrate specificity switch FlhB assembles onto the export gate to regulate type three secretion. Nat Commun 11:1–10

    Article  Google Scholar 

  • Kuhlen L, Johnson S, Cao J, Deme JC, Lea SM (2021) Nonameric structures of the cytoplasmic domain of FlhA and SctV in the context of the full-length protein. PLoS One 16:1–10

    Article  Google Scholar 

  • Kutsukake K, Ohya Y, Iino T (1990) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laventie BJ, Jenal U (2020) Surface sensing and adaptation in bacteria. Annu Rev Microbiol 74:735–760

    Article  CAS  PubMed  Google Scholar 

  • Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443:355–358

    Article  CAS  PubMed  Google Scholar 

  • Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D (2010) Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:996–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magariyama Y, Sugiyama S, Muramoto K, Maekawa Y, Kawagishi I, Imae Y (1994) Very fast flagellar rotation. Nature 371:752

    Article  CAS  PubMed  Google Scholar 

  • Majewski DD, Worrall LJ, Hong C, Atkinson CE, Vuckovic M, Watanabe N, Yu Z, Strynadka NCJ (2019) Cryo-EM structure of the homohexameric T3SS ATPase-central stalk complex reveals rotary ATPase-like asymmetry. Nat Commun 10:1–12

    Article  Google Scholar 

  • Maki-Yonekura S, Yonekura K, Namba K (2003) Domain movements of HAP2 in the cap-filament complex formation and growth process of the bacterial flagellum. Proc Natl Acad Sci U S A 100:15528–15533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maki-Yonekura S, Yonekura K, Namba K (2010) Conformational change of flagellin for polymorphic supercoiling of the flagellar filament. Nat Struct Mol Biol 17:417–422

    Article  CAS  PubMed  Google Scholar 

  • Mariano G, Faba-Rodriguez R, Bui S, Zhao W, Ross J, Tsokov S, Bergeron JRC (2022) Oligomerization of the FliF domains suggests a coordinated assembly of the bacterial flagellum MS ring. Front Microbiol 12:781960

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsunami H, Barker CS, Yoon YH, Wolf M, Samatey FA (2016) Complete structure of the bacterial flagellar hook reveals extensive set of stabilizing interactions. Nat Commun 7:1–10

    Article  Google Scholar 

  • Matsunami H, Yoon YH, Imada K, Namba K, Samatey FA (2021) Structure of the bacterial flagellar hook cap provides insights into a hook assembly mechanism. Commun Biol 4:1–3

    Article  Google Scholar 

  • Mcdowell MA, Marcoux J, Mcvicker G, Johnson S, Fong YH, Stevens R, Bowman LAH, Degiacomi MT, Yan J, Wise A et al (2016) Characterisation of ShigellaSpa33 and ThermotogaFliM/N reveals a new model for C-ring assembly in T3SS. Mol Microbiol 99:749–766

    Article  CAS  PubMed  Google Scholar 

  • Minamino T, González-Pedrajo B, Yamaguchi K, Aizawa SI, Macnab RM (1999) FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol Microbiol 34:295–304

    Article  CAS  PubMed  Google Scholar 

  • Montemayor EJ, Ploscariu NT, Sanchez JC, Parrell D, Sillard RS, Shebelut CW, Ke Z, Guerrero-ferreira RC, Wright R (2021) Flagellar structures from the bacterium Caulobacter crescentus and implications for phage/CbK predation of Multiflagellin bacteria. J Bacteriol 203:1–20

    Article  Google Scholar 

  • Morimoto YV, Ito M, Hiraoka KD, Che YS, Bai F, Kami-ike N, Namba K, Minamino T (2014) Assembly and stoichiometry of FliF and FlhA in Salmonella flagellar basal body. Mol Microbiol 91:1214–1226

    Article  CAS  PubMed  Google Scholar 

  • Murphy GE, Leadbetter JR, Jensen GJ (2006) In situ structure of the complete Treponema primitia flagellar motor. Nature 442:1062–1064

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S (2020) Spirochete flagella and motility. Biomolecules 10:550

    Article  CAS  PubMed Central  Google Scholar 

  • Ohnishi K, Ohto Y, Aizawa SI, Macnab RM, Iino T (1994) FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol 176:2272–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis G, Chevance FFV, Liou W, Renault TT, Hughes KT, Rainville S, Erhardt M (2017) Variability in bacterial flagella re-growth patterns after breakage. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  • Postel S, Deredge D, Bonsor DA, Yu X, Diederichs K, Helmsing S, Vromen A, Friedler A, Hust M, Egelman EH, Beckett D (2016) Bacterial flagellar capping proteins adopt diverse oligomeric states. elife 5:e18857

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossez Y, Wolfson EB, Holmes A, Gally DL, Holden NJ (2015) Bacterial flagella: twist and stick, or dodge across the kingdoms. PLoS Pathog 11:e1004483

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossmann FM, Beeby M (2018) Insights into the evolution of bacterial flagellar motors from high-throughput in situ electron cryotomography and subtomogram averaging. Acta Crystallogr Sect D Struct Biol 74:585–594

    Article  CAS  Google Scholar 

  • Samatey FA, Matsunami H, Imada K, Nagashima S, Shaikh TR, Thomas DR, Chen JZ, DeRosier DJ, Kitao A, Namba K (2004) Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431:1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Santiveri M, Roa-Eguiara A, Kühne C, Wadhwa N, Hu H, Berg HC, Erhardt M, Taylor NMI (2020) Structure and function of stator units of the bacterial flagellar motor. Cell 183:244–257.e16

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Takahashi N, Chevance FFV, Karlinsey JE, Hughes KT, Aizawa SI (2007) FliK regulates flagellar hook length as an internal ruler. Mol Microbiol 64:1404–1415

    Article  CAS  PubMed  Google Scholar 

  • Shibata S, Matsunami H, Aizawa SI, Wolf M (2019) Torque transmission mechanism of the curved bacterial flagellar hook revealed by cryo-EM. Nat Struct Mol Biol 26:941–945

    Article  CAS  PubMed  Google Scholar 

  • Silva YR, Contreras-Martel C, Macheboeuf P, Dessen A (2020) Bacterial secretins: mechanisms of assembly and membrane targeting. Protein Sci 29(4):893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer HM, Erhardt M, Hughes KT (2014) Comparative analysis of the secretion capability of early and late flagellar type III secretion substrates. Mol Microbiol 93:505–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skerker JM, Laub MT (2004) Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat Rev Microbiol 2:325–337

    Article  CAS  PubMed  Google Scholar 

  • Song WS, Cho SY, Hong HJ, Park SC, Yoon SI (2017) Self-oligomerizing structure of the flagellar cap protein FliD and its implication in filament assembly. J Mol Biol 429(6):847–857

    Article  CAS  PubMed  Google Scholar 

  • Sosinsky GE, Francis NR, Stallmeyer MJB, DeRosier DJ (1992) Substructure of the flagellar basal body of Salmonella typhimurium. J Mol Biol 223:171–184

    Article  CAS  PubMed  Google Scholar 

  • Soutourina O, Kolb A, Krin E, Laurent-Winter C, Rimsky S, Danchin A, Bertin P (1999) Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181:7500–7508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stallmeyer MJB, Macnab RM, Derosier DJ (1989) Image reconstruction of the flagellar basal body of Salmonella typhimurium. J Mol Biol 205:519–528

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Yonekura K, Namba K (2004) Structure of the rotor of the bacterial flagellar motor revealed by electron Cryomicroscopy and single-particle image analysis. J Mol Biol 337:105–113

    Article  CAS  PubMed  Google Scholar 

  • Takekawa N, Kawamoto A, Sakuma M, Kato T, Minamino T, Namba K, Homma M, Imada K, Kojima S, Kinoshita M (2021) Two distinct conformations in 34 flif subunits generate three different symmetries within the flagellar ms-ring. MBio 12:1–13

    Article  Google Scholar 

  • Tan J, Zhang X, Wang X, Xu C, Chang S, Wu H, Wang T, Liang H, Gao H, Zhou Y et al (2021) Structural basis of assembly and torque transmission of the bacterial flagellar motor. Cell 184:2665–2679.e19

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Fukuoka H, Yakushi T, Kojima S, Homma M (2006) The vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+−driven flagella and required for stator formation. Mol Microbiol 62:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Terashima H, Koike M, Kojima S, Homma M (2010) The flagellar basal body-associated protein FlgT is essential for a novel ring structure in the sodium-driven vibrio motor. J Bacteriol 192:5609–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terashima H, Li N, Sakuma M, Koike M, Kojima S, Homma M, Imada K (2013) Insight into the assembly mechanism in the supramolecular rings of the sodium-driven vibrio flagellar motor from the structure of FlgT. Proc Natl Acad Sci U S A 110:6133–6138

    Article  PubMed  PubMed Central  Google Scholar 

  • Terashima H, Hirano K, Inoue Y, Tokano T, Kawamoto A, Kato T, Yamaguchi E, Namba K, Uchihashi T, Kojima S et al (2020) Assembly mechanism of a supramolecular MS-ring complex to initiate bacterial flagellar biogenesis in vibrio species. J Bacteriol 202(16):601

    Article  Google Scholar 

  • Thomas DR, Francis NR, Xu C, DeRosier DJ (2006) The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of salmonella enterica Serovar typhimurium. J Bacteriol 188:7039–7048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson NM, Ferreira JL, Matthews-Palmer TR, Beeby M, Pallen MJ (2018) Giant flagellins form thick flagellar filaments in two species of marine γ-proteobacteria. PLoS One 13:1–12

    Article  Google Scholar 

  • Van Way SM, Hosking ER, Braun TF, Manson MD (2000) Mot protein assembly into the bacterial flagellum: A model based on mutational analysis of the motB gene. J Mol Biol 297:7–24

    Article  PubMed  Google Scholar 

  • Vartanian AS, Pazs A, Fortgang EA, Abramsons J, Dahlquist FW (2012) Structure of flagellar motor proteins in complex allows for insights into motor structure and switching. J Biol Chem 287:35779–35783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Burrage AM, Postel S, Clark RE, Orlova A, Sundberg EJ, Kearns DB, Egelman EH (2017) A structural model of flagellar filament switching across multiple bacterial species. Nat Commun 8:960

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Benson AK, Newton A (1995) Global regulation of a σ54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 177:3241–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Q, Shi K, Portaliou A, Rossi P, Economou A, Kalodimos CG (2018) Structures of chaperone-substrate complexes docked onto the export gate in a type III secretion system. Nat Commun 9:1–9

    Article  Google Scholar 

  • Xue C, Ho Lam K, Zhang H, Sun K, Hang Lee S, Chen X, Wing Ngor A, S. (2018) Crystal structure of the FliF-FliG complex from Helicobacter pylori yields insight into the assembly of the motor MS-C ring in the bacterial flagellum. J Biol Chem 293:2066–2078

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Makino F, Miyata T, Minamino T, Kato T, Namba K (2021) Structure of the molecular bushing of the bacterial flagellar motor. Nat Commun 12:4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto S, Kutsukake K (2006) FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium. J Bacteriol 188:6703–6708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonekura K, Maki S, Morgan DG, DeRosier DJ, Vonderviszt F, Imada K, Namba K (2000) The bacterial flagellar cap as the rotary promoter of Flagellin self-assembly. Science (80-.) 290:2148–2152

    Article  CAS  Google Scholar 

  • Yonekura K, Maki-Yonekura S, Namba K (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643–650

    Article  CAS  PubMed  Google Scholar 

  • Yoon YH, Barker CS, Bulieris PV, Matsunami H, Samatey FA (2016) Structural insights into bacterial flagellar hooks similarities and specificities. Sci Rep 6:1–11

    Article  Google Scholar 

  • Young KT, Davis LM, DiRita VJ (2007) Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 5:665–679

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhao Y, Zhuang X, Lo W, Baker MAB, Lo C et al (2018) Frequent pauses in Escherichia coli fiagella fiuorescence imaging. Nat Commun 9:1885

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeytuni N, Hong C, Flanagan KA, Worrall LJ, Theiltges KA, Vuckovic M, Huang RK, Massoni SC, Camp AH, Yu Z et al (2017) Near-atomic resolution cryoelectron microscopy structure of the 30-fold homooligomeric SpoIIIAG channel essential to spore formation in Bacillus subtilis. Proc Natl Acad Sci U S A 114:E7073–E7081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Nishikino T, Hu B, Kojima S, Homma M, Liu J (2017) Molecular architecture of the sheathed polar flagellum in vibrio alginolyticus. Proc Natl Acad Sci U S A 114:10966–10971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien R. C. Bergeron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Otaibi, N.S., Bergeron, J.R.C. (2022). Structure and Assembly of the Bacterial Flagellum. In: Harris, J.R., Marles-Wright, J. (eds) Macromolecular Protein Complexes IV. Subcellular Biochemistry, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-031-00793-4_13

Download citation

Publish with us

Policies and ethics