Skip to main content
Log in

Immobilization of Microbial Cells on Polymeric Matrices Modified by Plasma Treatment

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

It is shown that microbial cells can be immobilized on polymer matrices modified via plasma treatment. On the example of microbial cells Azospirillum brasilense Sp 7, A. lipoferum Sp59b, and Escherichia coli XL-1, it was found that the immobilization efficiency of biological objects depends on the film processing time in plasma. Treatment of a polystyrene film in a high-frequency discharge plasma allowed a significant increase in the lifetime of microbial cells immobilized on its surface. It was shown that the optimal time for film processing in plasma was 30 s, the time to immobilize microbial cells was ~ 20 min, and bacteria remained viable for up to 6 months after immobilization. The use of matrices modified with plasma treatment as a carrier for immobilized the microbial cells to production biosensors is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Beshay, U., El-Enshasy, H., Ismail, I.M.K., Moawad, H., and Abd-El-Ghany, S., Pol. J. Microbiol., 2011, vol. 60, no. 2, pp. 133–138.

    Article  CAS  Google Scholar 

  2. Sinitsin, A., Rainina, E.I., Lozinskii, V.I., and Spasov, S.D., Immobilizovannye kletki mikroorganizmov (Immobilized Microorganismal Cells), Moscow: Mosk. Univ., 1994.

  3. Arslan, F., Ustabas, S., and Arslan, H., Sensors, 2011, vol. 11, no. 8, pp. 8152–8163.

    Article  CAS  Google Scholar 

  4. Tsui, O.K.C., in Polymer Thin Films, Tsuiand, O.K.C. and Russell, T.P., Eds., Singapore: World Sci., 2008, pp. 267–294.

    Book  Google Scholar 

  5. Otero, T.F., in Polymer Sensors and Actuators, Osada, Y. and Rossi, D.E., Eds., Berlin: Springer, 2000, pp. 295–324.

    Google Scholar 

  6. Sheremet'ev, S.V. and Shteinberg, E.M., Ispol’zovanie funktsional’nykh polimerov v meditsine (The Use of Functional Polymers in Medicine), Kazan: SibAK, 2012.

  7. Chu, P.K., Chen, J.Y., Wang, L.P., and Huang, N., Mat. Sci. Eng. R., 2002, vol. 36, no. 5, pp. 143–206.

    Article  Google Scholar 

  8. Jacobs, T., Morent, R., De Geyter, N., and Dubruel, P., Plasma Chem. Plasma, 2012, vol. 32, no. 5, pp. 1039–1073.

    Article  CAS  Google Scholar 

  9. Hagiwara, K., Hasebe, T., and Hotta, A., Surf. Coat. Technol., 2013, vol. 216, pp. 318–323.

    Article  CAS  Google Scholar 

  10. van Kooten, T.G., Spijker, H.T., and Busscher, H.J., Biomaterials, 2004, vol. 25, no. 10, pp. 1735–1747.

    Article  CAS  Google Scholar 

  11. Smirnov, A.V., Atkin, V.S., Gorbachev, I.A., Grebennikov, A.I., Sinev, I.V., and Simakov, V.V., BioNanoScience, 2017, vol. 7, no. 4, pp. 680–685.

    Article  Google Scholar 

  12. Zaitsev, B.D., Borodina, I.A., Teplykh, A.A., Staroverov, S.A., and Fomin, A.S., Talanta, 2018, vol. 178, pp. 569–576.

    Article  Google Scholar 

  13. Kryakunova, E.D. and Kanarskii, A.V., Vestn. Kazan.Tekhnol. Univ., 2012, vol. 15, no. 17, pp. 189–194.

    Google Scholar 

  14. Adamson, A.W. and Gast, A.P., Physical Chemistry of Surfaces, 6th ed., Wiley, 1997. ISBN: 978-0-471-14873-9

    Google Scholar 

  15. Buck, A.L., J. Appl. Meteorol., 1981, vol. 20, no. 12, pp. 1527–1532.

    Article  Google Scholar 

  16. Pisarev, O.A. and Ezhova, N.M., Sorbts. Khromatogr.Protsessy, 2008, vol. 8, no. 4, pp. 535–552.

    Google Scholar 

  17. Almeida, C., Branyik, T., Moradas-Ferreira, P., and Teixeira, J., J. Biosci. Bioeng., 2003, vol. 96, no. 6, pp. 513–518.

    Article  CAS  Google Scholar 

  18. Kumar, S.S. and Ghosh, A.R., Microbiology, 2019, vol. 165, no. 6, pp. 593–610.

    Article  CAS  Google Scholar 

  19. Gui, Q., Lawson, T., Shan, S., Yan, L., and Liu, Y., Sensors, 2017, vol. 17, no. 7, p. 1623. https://doi.org/10.3390/s17071623

    Article  CAS  Google Scholar 

  20. Guliy, O.I., Zaitsev, B.D., Smirnov, A.V., Karavaeva, O.A., and Borodina, I.A., Appl. Biochem. Microbiol., 2017, vol. 53, no. 6, pp. 725–732.

    Article  CAS  Google Scholar 

  21. Guliy, O.I., Zaitsev, B.D., Smirnov, A.V., Karavaeva, O.A., and Borodina, I.A., Biosens. Bioelectron., 2019, vol. 130, no. 4, pp. 95–102.

    Article  CAS  Google Scholar 

  22. Longo, G., Alonso-Sarduy, L., Marques, RioL., Bizzini, A., Trampuz, A., Notz, J., Dietler, G., and Kasas, S., Nat. Nanotechnol., 2013, vol. 8, no. 7, pp. 522–526.

    Article  CAS  Google Scholar 

  23. Su, L., Wenzhao, J., and Changjun, H., Biosens. Bioelectron., 2011, vol. 26, no. 5, pp. 1788–1799.

    Article  CAS  Google Scholar 

  24. Bilal, M. and Iqbal, H.M.N., Process Saf. Environ. Prot., 2019, vol. 124, pp. 8–17.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (projects nos. 18-29-23042-mk and 19-07-00304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Guliy.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guliy, O.I., Simakov, V.V., Karavaeva, O.A. et al. Immobilization of Microbial Cells on Polymeric Matrices Modified by Plasma Treatment. Appl Biochem Microbiol 56, 237–243 (2020). https://doi.org/10.1134/S0003683820020076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820020076

Keywords:

Navigation