Skip to main content
Log in

Surface Modification of Polystyrene Thin Films by RF Plasma Treatment

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Polystyrene thin films were modified by the radio frequency argon plasma treatment. Effect of plasma processing on surface morphology was investigated by scanning electron microscopy and an atomic force microscopy. Volume structure of polystyrene films has been revealed after surface treatment by radio frequency argon plasma and was represented polymer coils organized in chains 1.8 μm in length and 0.21 μm in width. Dependence of surface roughness and wettability on plasma exposure time was investigated. It was shown that varying of treatment time in the small range leads to considerable changing of the surface roughness parameter and to formation of nano-sized pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adhikari, B., & Majumdar, S. (2004). Polymers in sensor applications. Progress in Polymer Science, 29(7), 699–766.

    Article  Google Scholar 

  2. Tsui, O. K. (2008) Anomalous dynamics of polymer films. In: Ophelia KC Tsui, Thomas P Russell Polymer Thin Films World scientific publishing, Singapore, рр.267–295

  3. Osada, Y., Rossi, D., & Danillo, E. (2013). Polymer sensors and actuators. Springer Science&Business Media.

  4. Atashbar, M. Z., Bejcek, B., Vijh, A., & Singamaneni, S. (2005). QCM biosensor with ultra thin polymer film. Sensors and Actuators B: Chemical, 107(2), 945–951.

    Article  Google Scholar 

  5. Fray, M. E., Prowans, P., Puskas, J. E., & Altstädt, V. (2006). Biocompatibility and fatigue properties of polystyrene-polyisobutylene-polystyrene, an emerging thermoplastic elastomeric biomaterial. Biomacromolecules, 7(3), 844–850.

    Article  Google Scholar 

  6. George, P. A., Donose, B. C., & Cooper-White, J. J. (2009). Self-assembling polystyrene-block-poly (ethylene oxide) copolymer surface coatings: resistance to protein and cell adhesion. Biomaterials, 30(13), 2449–2456.

    Article  Google Scholar 

  7. Imbert-Laurenceau, E., Berger, M. C., Pavon-Djavid, G., Jouan, A., & Migonney, V. (2005). Surface modification of polystyrene particles for specific antibody adsorption. Polymer, 46(4), 1277–1285.

    Article  Google Scholar 

  8. Schwarz, M. (2011). Implantable or insertable medical devices for controlled delivery of a therapeutic agent. Patent № US 7,901,702 B2.

  9. Pavithra, D., & Doble, M. (2008). Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials, 3(3), 034003.

    Article  Google Scholar 

  10. Vachon, D., Wnek, G.E. (2001). Medical uses of styrene sulfonate polymers. Patent n° US 6,306,419 B1.

  11. Sadaka, A., & Yuan, J. R. (2010). U.S. Patent No. 7,804,228. Washington: U.S. Patent and Trademark Office.

    Google Scholar 

  12. Wang, H., Ritter, T. A., Cao, W., & Shung, K. K. (1999). Passive materials for high-frequency ultrasound transducers. Proc. SPIE 3664, Medical Imaging 1999: Ultrasonic Transducer Engineering. doi:10.1117/12.350684.

    Google Scholar 

  13. Smirnov, A. V., Sinev, I. V., & Shihabudinov, A. M. (2012). Acoustic properties of polystyrene and wolfram based composite 0-3. Journal of radio electronics, 12, 1–13.

    Google Scholar 

  14. Hands, P. J., Laughlin, P. J., & Bloor, D. (2012). Metal–polymer composite sensors for volatile organic compounds: Part 1. Flow-through chemi-resistors. Sensors and Actuators B: Chemical, 162(1), 400–408.

    Article  Google Scholar 

  15. Yang, J., Rácz, Z., Gardner, J. W., Cole, M., & Chen, H. (2012). Ratiometric info-chemical communication system based on polymer-coated surface acoustic wave microsensors. Sensors and Actuators B: Chemical, 173, 547–554.

    Article  Google Scholar 

  16. Zhou, Q., Lau, S., Wu, D., & Shung, K. K. (2011). Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Progress in Materials Science, 56(2), 139–174.

    Article  Google Scholar 

  17. d'Agostino, R. (1990). Plasma polymerization of fluorocarbons. Plasma Deposition, Treatment, and Etching of Polymers. Academic Press, USA

  18. Recek, N., Resnik, M., Motaln, H., Lah-Turnšek, T., Augustine, R., Kalarikkal, N., & Mozetič, M. (2016). Cell adhesion on polycaprolactone modified by plasma treatment. International Journal of Polymer Science. doi:10.1155/2016/7354396.

    Google Scholar 

  19. Asadinezhad, A., Novák, I., Lehocký, M., Bílek, F., Vesel, A., Junkar, I., & Popelka, A. (2010). Polysaccharides coatings on medical-grade PVC: a probe into surface characteristics and the extent of bacterial adhesion. Molecules, 15(2), 1007–1027.

    Article  Google Scholar 

  20. Hickok, N. J., & Shapiro, I. M. (2012). Immobilized antibiotics to prevent orthopaedic implant infections. Advanced Drug Delivery Reviews, 64(12), 1165–1176.

    Article  Google Scholar 

  21. Goodman, S. B., Yao, Z., Keeney, M., & Yang, F. (2013). The future of biologic coatings for orthopaedic implants. Biomaterials, 34(13), 3174–3183.

    Article  Google Scholar 

  22. Vesel, A., Kovac, J., Modic, M., & Mozetic, M. (2015). Modification of polytetrafluoroethylene surfaces using H2S plasma treatment. Applied Surface Science, 357, 1325–1332.

    Article  Google Scholar 

  23. Hagiwara, K., Hasebe, T., & Hotta, A. (2013). Effects of plasma treatments on the controlled drug release from poly (ethylene-co-vinyl acetate). Surface and Coatings Technology, 216, 318–323.

    Article  Google Scholar 

  24. van Kooten, T. G., Spijker, H. T., & Busscher, H. J. (2004). Plasma-treated polystyrene surfaces: model surfaces for studying cell–biomaterial interactions. Biomaterials, 25(10), 1735–1747. doi:10.1016/j.biomaterials.2003.08.071.

    Article  Google Scholar 

  25. Guo, B., Li, S., Song, L., Yang, M., Zhou, W., Tyagi, D., & Zhu, J. (2015). Plasma-treated polystyrene film that enhances binding efficiency for sensitive and label-free protein biosensing. Applied Surface Science, 345, 379–386. doi:10.1016/j.apsusc.2015.03.070.

    Article  Google Scholar 

  26. Fabbri, M., Gigli, M., Costa, M., Govoni, M., Seri, P., Lotti, N., et al. (2015). The effect of plasma surface modification on the biodegradation rate and biocompatibility of a poly (butylene succinate)-based copolymer. Polymer Degradation and Stability, 121, 271–279. doi:10.1016/j.polymdegradstab.2015.09.015.

    Article  Google Scholar 

  27. Juang, R. S., Hou, W. T., Huang, Y. C., Tseng, Y. C., & Huang, C. (2016). Surface hydrophilic modifications on polypropylene membranes by remote methane/oxygen mixture plasma discharges. Journal of the Taiwan Institute of Chemical Engineers, 65, 420–426. doi:10.1016/j.jtice.2016.04.032.

    Article  Google Scholar 

  28. Kharitonov, A. P., Simbirtseva, G. V., Tressaud, A., Durand, E., Labrugère, C., & Dubois, M. (2014). Comparison of the surface modifications of polymers induced by direct fluorination and rf-plasma using fluorinated gases. Journal of Fluorine Chemistry, 165, 49–60. doi:10.1016/j.jfluchem.2014.05.002.

    Article  Google Scholar 

  29. Kondyurin, A., Gan, B. K., Bilek, M. M. M., Mizuno, K., & McKenzie, D. R. (2006). Etching and structural changes of polystyrene films during plasma immersion ion implantation from argon plasma. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 251(2), 413–418. doi:10.1016/j.nimb.2006.06.027.

    Article  Google Scholar 

  30. Ibrahim, K., Salminen, A., Holappa, S., Kataja, K., Lampinen, H., et al. (2006). Preparation and characterization of polystyrene–poly (ethylene oxide) amphiphilic block copolymers via atom transfer radical polymerization: potential application as paper coating materials. Journal of Applied Polymer Science, 102(5), 4304–4313. doi:10.1002/app.24886.

    Article  Google Scholar 

  31. Ting, Y. H., Liu, C. C., Park, S. M., Jiang, H., Nealey, P. F., & Wendt, A. E. (2010). Surface roughening of polystyrene and poly (methyl methacrylate) in Ar/O2 plasma etching. Polymer, 2(4), 649–663. doi:10.3390/polym2040649.

    Article  Google Scholar 

  32. North, S. H., Lock, E. H., Cooper, C. J., Franek, J. B., Taitt, C. R., & Walton, S. G. (2010). Plasma-based surface modification of polystyrene microtiter plates for covalent immobilization of biomolecules. ACS Applied Materials & Interfaces, 2(10), 2884–2891. doi:10.1021/am100566e.

    Article  Google Scholar 

  33. Wang, B., Wang, X. C., Zheng, H. Y., & Lam, Y. C. (2016). Surface modification of polystyrene by femtosecond laser irradiation. Journal of Laser Micro Nanoengineering, 11(2), 253. doi:10.2961/jlmn.2016.02.0017.

    Article  Google Scholar 

  34. Chen, Y., Gao, Q., Wan, H., Yi, J., Wei, Y., & Liu, P. (2013). Surface modification and biocompatible improvement of polystyrene film by Ar, O2 and Ar+O2 plasma. Applied Surface Science, 265, 452–457. doi:10.1016/j.apsusc.2012.11.027.

    Article  Google Scholar 

  35. France, R. M., & Short, R. D. (1998). Plasma treatment of polymers: the effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study. Langmuir, 14(17), 4827–4835. doi:10.1021/la9713053.

    Article  Google Scholar 

  36. Guruvenket, S., Rao, G. M., Komath, M., & Raichur, A. M. (2004). Plasma surface modification of polystyrene and polyethylene. Applied Surface Science, 236(1), 278–284. doi:10.1016/j.apsusc.2004.04.033.

    Article  Google Scholar 

  37. Jung, Y. C., & Bhushan, B. (2006). Contact angle, adhesion and friction properties of micro-and nanopatterned polymers for superhydrophobicity. Nanotechnology, 17(19), 4970–4980.

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was funded by the Russian Foundation for Basic Research (RFBR) according to the research project No. 16-38-00633 and 16-07-00821. This work was supported by the research grant of Council Grants of the Russian Federation President (SP-677.2015.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Smirnov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.V., Atkin, V.S., Gorbachev, I.A. et al. Surface Modification of Polystyrene Thin Films by RF Plasma Treatment. BioNanoSci. 7, 680–685 (2017). https://doi.org/10.1007/s12668-017-0407-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-017-0407-1

Keywords

Navigation