Skip to main content

Modification and Uses of Synthetic and Biobased Polymeric Materials

  • Chapter
  • First Online:
Aryl Diazonium Salts and Related Compounds

Part of the book series: Physical Chemistry in Action ((PCIA))

  • 501 Accesses

Abstract

The surface engineering of polymers is still in development in order to modulate their properties to meet the requirements of the targeted applications. Lignocellulosic and agro-waste materials are increasingly studied as alternative to conventional ones employed for pollution remediation but also to develop original composites. In both cases, the surface of the material could be modified by coating or by covalent grafting. The diazonium chemistry has been successfully employed to modify the surface of carbon and metallic materials but its application to organic surfaces is still incipient. This chapter provides an overview of the recent developments in diazonium chemistry to modify polymer and biomass surfaces and its application in biosensor design, catalysis, and pollution removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delamar M, Hitmi R, Pinson J, Saveant JM (1992) Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J Am Chem Soc 114:5883–5884. https://doi.org/10.1021/ja00040a074

    Article  CAS  Google Scholar 

  2. Baranton S, Bélanger D (2005) Electrochemical derivatization of carbon surface by reduction of in situ generated diazonium cations. J Phys Chem B 109:24401–24410. https://doi.org/10.1021/jp054513+

    Article  CAS  PubMed  Google Scholar 

  3. Hetemi D, Noël V, Pinson J (2020) Grafting of diazonium salts on surfaces: application to biosensors. Biosensors 10. https://doi.org/10.3390/bios10010004

  4. Nemani SK, Annavarapu RK, Mohammadian B, Raiyan A, Heil J, Haque MA, Abdelaal A, Sojoudi H (2018) Surface modification of polymers: methods and applications. Adv Mater Interfaces 5:1801247. https://doi.org/10.1002/admi.201801247

    Article  CAS  Google Scholar 

  5. Pinson J, Thiry D (2019) Surface modification of polymers: methods and applications. Wiley

    Google Scholar 

  6. Mattiuzzi A, Troian-Gautier L, Mertens J, Reniers F, Bergamini J-F, Lenne Q, Lagrost C, Jabin I (2020) Robust hydrophobic gold, glass and polypropylene surfaces obtained through a nanometric covalently bound organic layer. RSC Adv 10:13553–13561. https://doi.org/10.1039/D0RA01011A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Troian-Gautier L, Martínez-Tong DE, Hubert J, Reniers F, Sferrazza M, Mattiuzzi A, Lagrost C, Jabin I (2016) Controlled modification of polymer surfaces through grafting of calix[4]arene-Tetradiazoate salts. The J Phys Chem C 120:22936–22945. https://doi.org/10.1021/acs.jpcc.6b06143

    Article  CAS  Google Scholar 

  8. Chehimi MM, Lamouri A, Picot M, Pinson J (2014) Surface modification of polymers by reduction of diazonium salts: polymethylmethacrylate as an example. J Mater Chem C 2:356–363. https://doi.org/10.1039/C3TC31492H

    Article  CAS  Google Scholar 

  9. Bouriga M, Chehimi MM, Combellas C, Decorse P, Kanoufi F, Deronzier A, Pinson J (2013) Sensitized photografting of diazonium salts by visible light. Chem Mater 25:90–97. https://doi.org/10.1021/cm3032994

    Article  CAS  Google Scholar 

  10. Durán IR, Vanslambrouck S, Chevallier P, Hoesli CA, Laroche G (2020) Atmospheric pressure cold plasma versus wet-chemical surface treatments for carboxyl functionalization of polylactic acid: a first step toward covalent immobilization of bioactive molecules. Colloids Surf, B 189:110847. https://doi.org/10.1016/j.colsurfb.2020.110847

    Article  CAS  Google Scholar 

  11. Bagheri H, Bayat P, Piri-Moghadam H (2013) Grafting the sol–gel based sorbents by diazonium salts: a novel approach toward unbreakable capillary microextraction. J Chromatogr A 1318:58–64. https://doi.org/10.1016/j.chroma.2013.10.033

    Article  CAS  PubMed  Google Scholar 

  12. Garcia A, Berthelot T, Viel P, Mesnage A, Jégou P, Nekelson F, Roussel S, Palacin S (2010) ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting. ACS Appl Mater Interfaces 2:1177–1183. https://doi.org/10.1021/am1000163

    Article  CAS  PubMed  Google Scholar 

  13. Acevedo DF, Salavagione HJ, Miras MC, Barbero CA (2005) Synthesis, properties and aplications of functionalized polyanilines. J Braz Chem Soc 16:259–269

    Article  CAS  Google Scholar 

  14. Picot M, Rodulfo R, Nicolas I, Szymczyk A, Barrière F, Rabiller-Baudry M (2012) A versatile route to modify polyethersulfone membranes by chemical reduction of aryldiazonium salts. J Membr Sci 417–418:131–136. https://doi.org/10.1016/j.memsci.2012.06.025

    Article  CAS  Google Scholar 

  15. Soulignac C, Cornelio B, Brégier F, Le Derf F, Brière JF, Clamens T, Lesouhaitier O, Estour F, Vieillard J (2019) Heterogeneous-phase Sonogashira cross-coupling reaction on COC surface for the grafting of biomolecules—application to isatin. Colloids Surf, B 181:639–647. https://doi.org/10.1016/j.colsurfb.2019.06.001

    Article  CAS  Google Scholar 

  16. Brisset F, Vieillard J, Berton B, Morin-Grognet S, Duclairoir-Poc C, Le Derf F (2015) Surface functionalization of cyclic olefin copolymer with aryldiazonium salts: a covalent grafting method. Appl Surf Sci 329:337–346. https://doi.org/10.1016/j.apsusc.2014.12.060

    Article  CAS  Google Scholar 

  17. Rahman MR, Islam MN, Huque MM, Hamdan S, Ahmed AS (2010) Effect of chemical treatment on rice husk reinforced polyethylene composites. Bioressources 5:854–869

    CAS  Google Scholar 

  18. Guselnikova OA, Postnikov PS, Fitl P, Tomecek D, Sajdl P, Elashnikov R, Kolska Z, Chehimi MM, Švorčík V, Lyutakov O (2017) Tuning of PEDOT:PSS properties through covalent surface modification. J Polym Sci, Part B: Polym Phys 55:378–387. https://doi.org/10.1002/polb.24282

    Article  CAS  Google Scholar 

  19. Combellas C, Kanoufi F, Mazouzi D, Thiébault A, Bertrand P, Médard N (2003) Surface modification of halogenated polymers. 4. Functionalisation of poly(tetrafluoroethylene) surfaces by diazonium salts. Polymer 44:19–24. https://doi.org/10.1016/S0032-3861(02)00736-X

  20. Vieillard J, Hubert-Roux M, Brisset F, Soulignac C, Fioresi F, Mofaddel N, Morin-Grognet S, Afonso C, Le Derf F (2015) Atmospheric solid analysis probe-ion mobility mass spectrometry: an original approach to characterize grafting on cyclic olefin copolymer surfaces. Langmuir 31:13138–13144. https://doi.org/10.1021/acs.langmuir.5b03494

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Kopiec G, Müller F, Nyßen F, Shimizu K, Ceccato M, Daasbjerg K, Plumeré N (2021) Spectroscopic evidence for a covalent sigma Au–C bond on Au surfaces using 13C isotope labeling. JACS Au 1:362–368. https://doi.org/10.1021/jacsau.0c00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Combellas C, Kanoufi F, Pinson J, Podvorica FI (2005) Time-of-flight secondary ion mass spectroscopy characterization of the covalent bonding between a carbon surface and aryl groups. Langmuir 21:280–286. https://doi.org/10.1021/la048106l

    Article  CAS  PubMed  Google Scholar 

  23. Cossoul E, Hubert-Roux M, Sebban M, Churlaud F, Oulyadi H, Afonso C (2015) Evaluation of atmospheric solid analysis probe ionization coupled to ion mobility mass spectrometry for characterization of poly(ether ether ketone) polymers. Anal Chim Acta 856:46–53. https://doi.org/10.1016/j.aca.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  24. Barrère C, Selmi W, Hubert-Roux M, Coupin T, Assumani B, Afonso C, Giusti P (2014) Rapid analysis of polyester and polyethylene blends by ion mobility-mass spectrometry. Polym Chem 5:3576–3582. https://doi.org/10.1039/C4PY00164H

    Article  Google Scholar 

  25. Lebègue E, Madec L, Brousse T, Gaubicher J, Levillain E, Cougnon C (2011) Modification of activated carbons based on diazonium ionsin situ produced from aminobenzene organic acid without addition of other acid. J Mater Chem 21:12221–12223. https://doi.org/10.1039/C1JM11538C

    Article  Google Scholar 

  26. Pognon G, Brousse T, Bélanger D (2011) Effect of molecular grafting on the pore size distribution and the double layer capacitance of activated carbon for electrochemical double layer capacitors. Carbon 49:1340–1348. https://doi.org/10.1016/j.carbon.2010.11.055

    Article  CAS  Google Scholar 

  27. Pognon G, Brousse T, Demarconnay L, Bélanger D (2011) Performance and stability of electrochemical capacitor based on anthraquinone modified activated carbon. J Power Sources 196:4117–4122. https://doi.org/10.1016/j.jpowsour.2010.09.097

    Article  CAS  Google Scholar 

  28. Pognon G, Cougnon C, Mayilukila D, Bélanger D (2012) Catechol-modified activated carbon prepared by the diazonium chemistry for application as active electrode material in electrochemical capacitor. ACS Appl Mater Interfaces 4:3788–3796. https://doi.org/10.1021/am301284n

    Article  CAS  PubMed  Google Scholar 

  29. Credou J, Volland H, Dano J, Berthelot T (2013) A one-step and biocompatible cellulose functionalization for covalent antibody immobilization on immunoassay membranes. J Mater Chem B 1:3277–3286. https://doi.org/10.1039/C3TB20380H

    Article  CAS  PubMed  Google Scholar 

  30. Schroll P, Fehl C, Dankesreiter S, König B (2013) Photocatalytic surface patterning of cellulose using diazonium salts and visible light. Org Biomol Chem 11:6510–6514. https://doi.org/10.1039/C3OB40990B

    Article  CAS  PubMed  Google Scholar 

  31. Fioresi F, Vieillard J, Bargougui R, Bouazizi N, Fotsing PN, Woumfo ED, Brun N, Mofaddel N, Le Derf F (2017) Chemical modification of the cocoa shell surface using diazonium salts. J Colloid Interface Sci 494:92–97. https://doi.org/10.1016/j.jcis.2017.01.069

    Article  CAS  PubMed  Google Scholar 

  32. Kabir MA, Huque MM, Islam MR (2004) Modification of jute fibre by bifunctional diazonium salts in the presence of various mordants. Biosci, Biotech. Res Asia 2:79–84

    Google Scholar 

  33. Belbekhouche S, Kebe SI, Mahouche-Chergui S, Guerrouache M, Carbonnier B, Jaziri M, Chehimi MM (2017) Aryl diazonium-modified olive waste: A low-cost support for the immobilization of nanocatalysts. Colloids Surf, A 529:541–549. https://doi.org/10.1016/j.colsurfa.2017.06.011

    Article  CAS  Google Scholar 

  34. Rahman MR, Huque MM, Islam MN, Hasan M (2009) Mechanical properties of polypropylene composites reinforced with chemically treated abaca. Compos A Appl Sci Manuf 40:511–517. https://doi.org/10.1016/j.compositesa.2009.01.013

    Article  CAS  Google Scholar 

  35. Rezaur Rahman M, Nazrul Islam M, Monimul Huque M (2010) Influence of fiber treatment on the mechanical and morphological properties of sawdust reinforced polypropylene composites. J Polym Environ18:443–450. https://doi.org/10.1007/s10924-010-0230-z

  36. Islam MN, Rahman MR, Haque MM, Huque MM (2010) Physico-mechanical properties of chemically treated coir reinforced polypropylene composites. Compos A Appl Sci Manuf 41:192–198. https://doi.org/10.1016/j.compositesa.2009.10.006

    Article  CAS  Google Scholar 

  37. Credou J, Faddoul R, Berthelot T (2014) One-step and eco-friendly modification of cellulose membranes by polymer grafting. RSC Adv 4:60959–60969. https://doi.org/10.1039/C4RA11219A

    Article  CAS  Google Scholar 

  38. Berthelot T, Garcia A, Le XT, El Morsli J, Jégou P, Palacin S, Viel P (2011) “Versatile toolset” for DNA or protein immobilization: toward a single-step chemistry. Appl Surf Sci 257:3538–3546. https://doi.org/10.1016/j.apsusc.2010.11.071

    Article  CAS  Google Scholar 

  39. Mévellec V, Roussel S, Tessier L, Chancolon J, Mayne-LʼHermite M, Deniau G, Viel P, Palacin S (2007) Grafting polymers on surfaces: a new powerful and versatile diazonium salt-based one-step process in aqueous media. Chem Mater 19:6323–6330. https://doi.org/10.1021/cm071371i

    Article  CAS  Google Scholar 

  40. Sandomierski M, Strzemiecka B, Chehimi MM, Voelkel A (2016) Reactive diazonium-modified silica fillers for high-performance polymers. Langmuir 32:11646–11654. https://doi.org/10.1021/acs.langmuir.6b02891

    Article  CAS  PubMed  Google Scholar 

  41. Haque MM, Hasan M, Islam MS, Ali ME (2009) Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Biores Technol 100:4903–4906. https://doi.org/10.1016/j.biortech.2009.04.072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Vieillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vieillard, J., Le Derf, F., Gadroy, C., Samir, B. (2022). Modification and Uses of Synthetic and Biobased Polymeric Materials. In: Chehimi, M.M., Pinson, J., Mousli, F. (eds) Aryl Diazonium Salts and Related Compounds. Physical Chemistry in Action. Springer, Cham. https://doi.org/10.1007/978-3-031-04398-7_10

Download citation

Publish with us

Policies and ethics