Skip to main content
Log in

Adsorption Characteristics of WFD Heavy Metal Ions on New Biosourced Polyimide Films Determined by Electrochemical Impedance Spectroscopy

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, innovative biosourced polyimide polymers were derived from novel combinations of monomers (Isosorbide, 6-FDA and amine cardo). These polymers were obtained with satisfactory yields by polycondensation of different percentages of isosorbide and of 6-FDA (from 100% to 0%). The synthesized polyimides had number average molecular weight in the 17,600–22,000 g/mol range, and they were stable well above 451 °C (5% weight loss in N2). The glass transition temperature (Tg) were found to be in the range of 318–414 °C, depending on the composition of the copolymers. The adsorption of Water Framework Directive (WFD) heavy metals (Pb2+, Ni2+, Cd2+, Hg2+) on the biosourced polyimide films deposited on a gold electrode was monitored by the measurements of the impedance of the electrolyte/polyimide polymer/electrode interface. The adsorption isotherm of Pb2+on the different polyimide films was modeled according to a Langmuir isotherm with a best fitting. The relative adsorption capacities were higher when the isosorbide content was higher. Comparing the adsorption capacities of the different WFD heavy metals of the isosorbide based polyimide, the sequence is the following one: Pb2+ ≈ Ni2+ > Cd2+ > Hg2+. These results are within the paradigm of Pearson’s HSAB principle about the metal-oxygen interaction. When isosorbide based polyimide is the sensitive part of an impedimetric sensor, the detection limit for all the WFD heavy metals is 50 pM, very lower than the environmental quality standards for these WFD priority hazardous substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author.

References

  1. F. Fenglian, W. Qi, Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  2. E. Bazrafshan, L. Mohammadi, A. Ansari-Moghaddam, A.H. Mahvi, Heavy metals removal from aqueous environments by electrocoagulation process - A systematic review. J. Environ. Heal. Sci. Eng. 13 (2015). https://doi.org/10.1186/s40201-015-0233-8

  3. A. Ahmed, Heavy metal pollution – a mini review. J. Bacteriol. Mycol. Open Access. 6, 179–181 (2018). https://doi.org/10.15406/jbmoa.2018.06.00199.006

    Article  Google Scholar 

  4. A.T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi, Q.M.R. Haq, Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 16, 29592–29630 (2015). https://doi.org/10.3390/ijms161226183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. European Commission, EC, Commission Implementing Decision (EU) 2018/840 of 5 June 2018. Off. J. Eur. Union 141, 9–12 (2018)

    Google Scholar 

  6. A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56, 91–106 (2004). https://doi.org/10.1016/j.chemosphere.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  7. J. Esalah, M.M. Husein, Removal of heavy metals from aqueous solutions by precipitation-filtration using novel organo-phosphorus ligands. Sep. Sci. Technol. 43, 3461–3475 (2008). https://doi.org/10.1080/01496390802219661

    Article  CAS  Google Scholar 

  8. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018). https://doi.org/10.1016/j.ecoenv.2017.11.034

    Article  CAS  PubMed  Google Scholar 

  9. D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: a review of research trends over the past decade. J. Water Proc. Eng. 19, 164–171 (2017). https://doi.org/10.1016/j.jwpe.2017.07.026

    Article  Google Scholar 

  10. T.K. Tran, H.J. Leu, K.F. Chiu, C.Y. Lin, Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions. J. Chin. Chem. Soc. 64, 493–502 (2017). https://doi.org/10.1002/jccs.201600266

    Article  CAS  Google Scholar 

  11. A. Waheed, M. Mansha, N. Ullah, Nanomaterials-based electrochemical detection of heavy metals in water: current status, challenges and future direction. TrAC Trends Anal. Chem. 105, 37–51 (2018). https://doi.org/10.1016/j.trac.2018.04.012

    Article  CAS  Google Scholar 

  12. L. Eddaif, A. Shaban, J. Telegdi, Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: a review. Int. J. Environ. Anal. Chem. 99, 824–853 (2019). https://doi.org/10.1080/03067319.2019.1616708

    Article  CAS  Google Scholar 

  13. T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, Y. Wu, A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chem. 213, 306–312 (2016). https://doi.org/10.1016/j.foodchem.2016.06.091

    Article  CAS  PubMed  Google Scholar 

  14. V.N. Losev, O.V. Buyko, A.K. Trofimchuk, O.N. Zuy, Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP-OES determination of metals in natural waters. Microchem. J. 123, 84–89 (2015). https://doi.org/10.1016/j.microc.2015.05.022

    Article  CAS  Google Scholar 

  15. R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, I. Queralt, Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray Fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal. Chem. 87, 3535–3542 (2015). https://doi.org/10.1021/acs.analchem.5b00283

    Article  CAS  PubMed  Google Scholar 

  16. A.P.M. Michel, F. Sonnichsen, Laser induced breakdown spectroscopy for heavy metal detection in a sand matrix. Spectrochim. Acta Part B At. Spectrosc. 125, 177–183 (2016). https://doi.org/10.1016/j.sab.2016.10.001

    Article  CAS  Google Scholar 

  17. C. Sarzanini, M.C. Bruzzoniti, Metal species determination by ion chromatography. TrAC Trends Anal. Chem. 20, 304–310 (2001). https://doi.org/10.1016/S0165-9936(01)00071-1.001

    Article  CAS  Google Scholar 

  18. C.O.B. Okoye, A.M. Chukwuneke, N.R. Ekere, V.M.M. Melo, Simultaneous ultraviolet-visible (UVVIS) spectrophotometric quantitative determination of Pb, Hg, Cd, As and Ni ions in aqueous solutions using cyanidin as a chromogenic reagent. Int. J. Phys. Sci. 8, 98–102 (2013). https://doi.org/10.5897/ijps12.670

    Article  CAS  Google Scholar 

  19. F. Zhao, Z. Chen, F. Zhang, R. Li, J. Zhou, Ultra-sensitive detection of heavy metal ions in tap water by laser-induced breakdown spectroscopy with the assistance of electrical-deposition. Anal. Methods 2, 408–414 (2010). https://doi.org/10.1039/b9ay00160c

    Article  CAS  Google Scholar 

  20. R. Jain, S. Sharma, Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems. J. Pharm. Anal. 2, 56–61 (2012). https://doi.org/10.1016/j.jpha.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  21. L. Pujol, D. Evrard, K. Groenen-Serrano, M. Freyssinier, A. Ruffien-Cizsak, P. Gros, Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution. Front. Chem. 2, 1–24 (2014). https://doi.org/10.3389/fchem.2014.00019

    Article  CAS  Google Scholar 

  22. M. Miu, A. Angelescu, I. Kleps, M. Simion, Electrochemical sensors for heavy metals detection in liquid media. Int. J. Environ. Anal. Chem. 85(9–11), 675–679 (2005). https://doi.org/10.1080/03067310500146128

    Article  CAS  Google Scholar 

  23. A.J. Borrill, N.E. Reily, J.V. Macpherson, Addressing the practicalities of anodic stripping voltammetry for heavy metal detection: a tutorial review. Analyst. 144, 6834–6849 (2019). https://doi.org/10.1039/c9an01437c.03067310500146128

    Article  CAS  PubMed  Google Scholar 

  24. Y. Lu, X. Liang, C. Niyungeko, J. Zhou, J. Xu, G. Tian, A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta. 178, 324–338 (2018). https://doi.org/10.1016/j.talanta.2017.08.033

    Article  CAS  PubMed  Google Scholar 

  25. B.K. Bansod, T. Kumar, R. Thakur, S. Rana, I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 94, 443–455 (2017). https://doi.org/10.1016/j.bios.2017.03.031

    Article  CAS  PubMed  Google Scholar 

  26. W. Ben Mefteh, H. Touzi, Y. Chevalier, F. Bessueille, R. Kalfat, N.J. Renault, Gold electrodes functionalized by methyl-naphthyl substituted cyclam films for the detection of metal ions. Sensors Actuators B Chem. 213, 334–342 (2015). https://doi.org/10.1016/j.snb.2015.02.109.031

    Article  Google Scholar 

  27. L. Cui, J. Wu, H. Ju, Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 63, 276–286 (2015). https://doi.org/10.1016/j.bios.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  28. C. Wang, R. Chu, Z. Guan, Z. Ullah, H. Song, Y. Zhang, C. Yu, L. Zhao, Q. Li, L. Liu, Tailored polyimide as positive electrode and polyimide-derived carbon as negative electrode for sodium ion full batteries. Nanoscale 12, 4729–4735 (2020). https://doi.org/10.1039/C9NR09237D

    Article  CAS  PubMed  Google Scholar 

  29. M. Akhtar, A. Tahir, S. Zulfiqar, F. Hanif, M.F. Warsi, P.O. Agboola, I. Shakir, Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synth. Met. 265 (2020). https://doi.org/10.1016/j.synthmet.2020.116410

  30. M. Lo, M. Seydou, A. Bensghaïer, R. Pires, D. Gningue-Sall, J.J. Aaron, Z. Mekhalif, J. Delhalle, M.M. Chehimi, Polypyrrole-wrapped carbon nanotube composite films coated on diazonium-modified flexible ITO sheets for the electroanalysis of heavy metal ions. Sensors (Switzerland) 20, 1–18 (2020). https://doi.org/10.3390/s20030580

    Article  CAS  Google Scholar 

  31. E.K. Savan, S. Koytepe, A. Pasahan, G. Erdogdu, T. Seckin, Amperometric simultaneous measurement of copper and cobalt ions with polythiophene incorporating pendant terpyridine groups. Polym. Plast. Technol. Eng. 53, 1817–1824 (2014). https://doi.org/10.1080/03602559.2014.935405

    Article  CAS  Google Scholar 

  32. H. Sanaeepur, A. Ebadi Amooghin, S. Bandehali, A. Moghadassi, T. Matsuura, B. Van der Bruggen, Polyimides in membrane gas separation: monomer’s molecular design and structural engineering. Prog. Polym. Sci. 91, 80–125 (2019). https://doi.org/10.1016/j.progpolymsci.2019.02.001

    Article  CAS  Google Scholar 

  33. Y. Zhuang, J.G. Seong, Y.M. Lee, Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 92, 35–88 (2019). https://doi.org/10.1016/j.progpolymsci.2019.01.004

    Article  CAS  Google Scholar 

  34. J. Boudaden, M. Steinmaßl, H.E. Endres, A. Drost, I. Eisele, C. Kutter, P. Müller-Buschbaum, Polyimide-based capacitive humidity sensor. Sensors (Switzerland). 18, 1–15 (2018). https://doi.org/10.3390/s18051516.01496390802219661

    Article  Google Scholar 

  35. C.M. Nguyen, W.D. Huang, S. Rao, H. Cao, U. Tata, M. Chiao, J.C. Chiao, Sol-gel iridium oxide-based pH sensor array on flexible polyimide substrate. IEEE Sensors J. 13, 3857–3864 (2013). https://doi.org/10.1109/JSEN.2012.2236551

    Article  CAS  Google Scholar 

  36. Y.Y. Lv, J. Wu, Z.K. Xu, Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas. Sensors Actuators B Chem. 148, 233–239 (2010). https://doi.org/10.1016/j.snb.2010.05.029

    Article  CAS  Google Scholar 

  37. C. Wu, B.-O. Guan, C. Lu, H.-Y. Tam, Salinity sensor based on polyimide-coated photonic crystal fiber. Opt. Express 19, 20003 (2011). https://doi.org/10.1364/oe.19.020003

    Article  CAS  PubMed  Google Scholar 

  38. C. Zhang, S. Zhang, Y. Yan, F. Xia, A. Huang, Y. Xian, Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2,4,6-trinitrophenol. ACS Appl. Mater. Interfaces 9, 13415–13421 (2017). https://doi.org/10.1021/acsami.6b16423

    Article  CAS  PubMed  Google Scholar 

  39. Ö. Güngör, S. Köytepe, T. Seçkin, Polymer-plastics technology and engineering preparation of novel sensors based on polyimide membrane for sensitive and selective determination of dopamine. Polym.-Plast. Technol. Eng. 55(2), 119–128 (2015). https://doi.org/10.1080/03602559.2015.1055503

    Article  CAS  Google Scholar 

  40. A. Alborzi, S. Zahmatkesh, A. Yazdanpanah, L-Lysine-derived optically active poly(hydrazide-imide)s: synthesis, characterization and their application in removal of heavy metal ions. Polym. Bull. 70, 3359–3372 (2013). https://doi.org/10.1007/s00289-013-1027-8

    Article  CAS  Google Scholar 

  41. M.R. Vakili, S. Zahmatkesh, M.J. Panahiyan, T. Jafarizadeh, Poly(amide-hydrazide-imide)s containing L-aspartic acid: synthesis, characterization, and their applications in removal of heavy metal ions. Des. Monomers Polym. 18, 315–322 (2015). https://doi.org/10.1080/15685551.2014.999463

    Article  CAS  Google Scholar 

  42. F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, J.P. Pascault, Polymers from renewable 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): a review. Prog. Polym. Sci. 35, 578–622 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.001.8

    Article  CAS  Google Scholar 

  43. W. Qiu, L. Xu, C.C. Chen, D.R. Paul, W.J. Koros, Gas separation performance of 6FDA-based polyimides with different chemical structures. Polymer 54, 6226–6235 (2013). https://doi.org/10.1016/j.polymer.2013.09.007.8

    Article  CAS  Google Scholar 

  44. S. Mehdipour-Ataei, H. Arabi, N. Bahri-Laleh, New soluble, thermally stable poly(amide-imide)s containing cardo anthraquinone unit. Eur. Polym. J. 42, 2343–2351 (2006). https://doi.org/10.1016/j.eurpolymj.2006.06.006

    Article  CAS  Google Scholar 

  45. G.O. Yahaya, I. Mokhtari, A.A. Alghannam, S.H. Choi, H. Maab, A.A. Bahamdan, Cardo-type random co-polyimide membranes for high pressure pure and mixed sour gas feed separations. J. Memb. Sci. 550, 526–535 (2018). https://doi.org/10.1016/j.memsci.2017.10.063

    Article  CAS  Google Scholar 

  46. T. Chabbah, H. Abderrazak, R. Souissi, P. Saint-Martin, H. Casabianca, S. Chatti, R. Mercier, I. Rassas, A. Errachid, M. Hammami, N. Jaffrezic-Renault, A sensitive impedimetric sensor based on biosourced polyphosphine films for the detection of lead ions. Chemosensors 8(2), 34 (2020). https://doi.org/10.3390/CHEMOSENSORS8020034

    Article  CAS  Google Scholar 

  47. Z. Mi, Z. Liu, J. Yao, C. Wang, C. Zhou, D. Wang, X. Zhao, H. Zhou, Y. Zhang, C. Chen, Transparent and soluble polyimide films from 1,4:3,6-dianhydro-D-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: preparation, characterization, thermal and mechanical properties. Polym. Degrad. Stab. 151, 80–89 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.01.006

    Article  CAS  Google Scholar 

  48. A. Bashir, T. Manzoor, L.A. Malik, A. Qureashi, A.H. Pandith, Enhanced and selective adsorption of Zn(II), Pb(II), Cd(II), and Hg(II) Ions by a dumbbell- and flower-shaped potato starch phosphate polymer: a combined experimental and DFT calculation study. ACS Omega 5, 4853–4867 (2020). https://doi.org/10.1021/acsomega.9b03607.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. A. Sbartai, P. Namour, A. Errachid, J. Krejci, R. Sejnohova, L. Renaud, M.L. Hamlaoui, A.S. Loir, F. Garrelie, C. Donnet, H. Soder, E. Audouard, J. Granier, N. Jaffrezic-Renault, Electrochemical boron-doped diamond film microcells micromachined with femtosecond laser: application to the determination of water framework directive metals. Anal. Chem. 84, 4805–4811 (2012). https://doi.org/10.1021/ac3003598

    Article  CAS  PubMed  Google Scholar 

  50. M.R. Yaftian, M. Parinejad, D. Matt, A lead-selective membrane electrode based upon a phosphorylated hexahomotrioxacalix[3]arene. J. Chin. Chem. Soc. 54, 1535–1542 (2007). https://doi.org/10.1002/jccs.200700216

    Article  CAS  Google Scholar 

Download references

Funding

We would like to acknowledge the Financial support of CAMPUS-FRANCE and Institut Français of the French Embassy in Tunisia (Dr. Pierre Durand De Ramefort) for the SSHN grant, of the High Ministry of Education and Research in Tunisia for doctoral grant and European Commission for TUNWIN project Grant #952306.

Author information

Authors and Affiliations

Authors

Contributions

IJ: Investigation. FZ: Investigation. TC: Investigation. SC: Writing—original draft. PS-M: Methodology. HC: Conceptualization. SM: Methodology. FB: Methodology. CM: Conceptualization. RM: Conceptualization. AE: Funding acquisition. HA: Writing—original draft. MH: Funding acquisition. NJ-R: Writing—review and editing.

Corresponding author

Correspondence to Nicole Jaffrezic-Renault.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jlalia, I., Zouaoui, F., Chabbah, T. et al. Adsorption Characteristics of WFD Heavy Metal Ions on New Biosourced Polyimide Films Determined by Electrochemical Impedance Spectroscopy. J Inorg Organomet Polym 31, 2471–2482 (2021). https://doi.org/10.1007/s10904-020-01842-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01842-w

Keywords

Navigation