Skip to main content
Log in

Inactivation of Malic Enzymes Improves the Anaerobic Production of Four-Carbon Dicarboxylic Acids by Recombinant Escherichia coli Strains Expressing Pyruvate Carboxylase

  • PRODUCING ORGANISMS, BIOLOGY, SELECTION, AND GENETIC ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The genes maeA and maeB, encoding NADH- and NADPH-dependent malic enzymes, have been deleted in a recombinant Escherichia coli strain with inactivated mixed-acid fermentation pathways and a modified system of glucose transport and phosphorylation upon the heterological expression of the pyruvate carboxylase gene. During anaerobic glucose utilization, the parental strain synthesized malic, fumaric, and succinic acids as the main fermentation end products, while pyruvic acid was accumulated as the main by-product resulting from the functioning of the pyruvate–oxaloacetate–malate–pyruvate futile cycle. Upon individual deletions of the maeA and maeB genes, the mutant strains converted glucose into four-carbon dicarboxylic acids with increased efficiency still secreting notable amounts of pyruvic acid. The combined inactivation of both malic enzymes in the constructed strain significantly elevated the portion of malic, fumaric, and succinic acids among the fermentation end products with a concomitant decrease in the secretion of pyruvic acid and other by-products due to the abolishment of the action of the futile cycle competing with the target biosynthetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., and Jones, S., Top Value Added Chemicals from Biomass, vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Washington DC, USA: Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, 2004.

    Google Scholar 

  2. West, T.P., Malic acid production from thin stillage by Aspergillus species, Biotechnol. Lett., 2011, vol. 33, no. 12, pp. 2463– 2467. doi 10.1007/s10529-011-0720-7

    Article  PubMed  CAS  Google Scholar 

  3. Roa, EngelC.A., Straathof, A.J., Zijlmans, T.W., et al., Fumaric acid production by fermentation, Appl. Microbiol. Biotechnol., 2008, vol. 78, no. 3, pp. 379–389. doi 10.1007/s00253-007-1341-x

    Article  CAS  Google Scholar 

  4. Guettler, M.V., Rumler, D., and Jain, M.K., Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen, Int. J. Syst. Bacteriol., 1999, vol. 49, no. 1, pp. 207–216. doi 10.1099/00207713-49-1-207

    Article  PubMed  CAS  Google Scholar 

  5. Nghiem, N.P., Davison, B.H., Suttle, B.E., and Richardson, G.R., Production of succinic acid by Anaerobiospirillum succiniciproducens, Appl. Biochem. Biotechnol., 1997, vol. 63-65, pp. 565–576. doi 10.1007/bf02920454

    Article  PubMed  CAS  Google Scholar 

  6. Lee, P.C., Lee, S.Y., Hong, S.H., and Chang, H.N., Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen, Appl. Microbiol. Biotechnol., 2002, vol. 58, no. 5, pp. 663–668. doi 10.1007/s00253-002-0935-6

    Article  PubMed  CAS  Google Scholar 

  7. Yin, X., Li, J., Shin, H.D., et al., Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects, Biotechnol. Adv., 2015, vol. 33, no. 6, pp. 830–841. doi 10.1016/j.biotechadv.2015.04.006

    Article  PubMed  CAS  Google Scholar 

  8. Liu, J., Li, J., Shin, H.D., et al., Protein and metabolic engineering for the production of organic acids, Bioresour. Technol., 2017, vol. 239, pp. 412–421. doi 10.1016/j.biortech.2017.04.052

    Article  PubMed  CAS  Google Scholar 

  9. Vemuri, G.N., Eiteman, M.A., and Altman, E., Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli, Appl. Environ. Microbiol., 2002, vol. 68, no. 4, pp. 1715–1727. doi 10.1128/AEM.68.4.1715-1727.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Sanchez, A.M., Bennett, G.N., and San, K.Y., Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity, Metab. Eng., 2005, vol. 7, no. 3, pp. 229–239. doi 10.1016/j.ymben.2005.03.001

    Article  PubMed  CAS  Google Scholar 

  11. Skorokhodova, A.Y., Morzhakova, A.A., Gulevich, A.Y., and Debabov, V.G., Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum, J. Biotechnol., 2015, vol. 214, pp. 33–42. doi 10.1016/j.jbiotec.2015.09.003

    Article  PubMed  CAS  Google Scholar 

  12. Cao, Y., Cao, Y., and Lin, X., Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids, J. Ind. Microbiol. Biotechnol., 2011, vol. 38, no. 6, pp. 649–656. doi 10.1007/s10295-010-0913-4

    Article  PubMed  CAS  Google Scholar 

  13. Thakker, C., Martinez, I., Li, W., et al., Metabolic engineering of carbon and redox flow in the production of small organic acids, J. Ind. Microbiol. Biotechnol., 2015, vol. 42, no. 3, pp. 403–422. doi 10.1007/s10295-014-1560-y

    Article  PubMed  CAS  Google Scholar 

  14. Sauer, U. and Eikmanns, B.J., The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria, FEMS Microbiol. Rev., 2005, vol. 29, no. 4, pp. 765–794. doi 10.1016/j.femsre.2004.11.002

    Article  PubMed  CAS  Google Scholar 

  15. Gokarn, R.R., Evans, J.D., Walker, J.R., et al., The physiological effects and metabolic alterations caused by the expression of Rhizobium etli pyruvate carboxylase in Escherichia coli, Appl. Microbiol. Biotechnol., 2001, vol. 56, nos. 1–2, pp. 188–195. doi 10.1007/s002530100661

  16. Skorokhodova, A.Yu., Stasenko, A.A., Gulevich, A.Yu., and Debabov, V.G., Effect of anaplerotic pathways activation on CO2-dependent anaerobic glucose utilization by Escherichia coli strains deficient in the main pathways of mixed acid fermentation, Appl. Biochem. Microbiol., 2018, vol. 54, no. 2, pp. 141–148.

    Article  CAS  Google Scholar 

  17. Skorokhodova, A.Yu., Gulevich, A.Yu., and Debabov, V.G., Effect of extra- and intracellular sources of CO2 on anaerobic utilization of glucose by Escherichia coli strains deficient in carboxylation-independent fermentation pathways, Appl. Biochem. Microbiol., 2017, vol. 53, no. 3, pp. 304–309. doi 10.7868/S0555109917030151

    Article  CAS  Google Scholar 

  18. Sambrook, J., Fritsch, E., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York, USA: Cold Spring Harbor Laboratory Press, 1989, 2nd ed.

    Google Scholar 

  19. Katashkina, Zh.I., Skorokhodova, A.Yu., Zimenkov, D.V., et al., Tuning the expression level of a gene located on a bacterial chromosome, Mol. Biol. (Moscow), 2005, vol. 39, no. 5, pp. 719–726.

    Article  CAS  Google Scholar 

  20. Datsenko, K.A. and Wanner, B.L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, no. 12, pp. 6640–6645. doi 10.1073/pnas.120163297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gulevich, A.Yu, Skorokhodova, A.Yu., Ermishev, V.Yu., et al., A New method for the construction of translationally coupled operons in a bacterial chromosome, Mol. Biol. (Moscow), 2009, vol. 43, no. 3, pp. 505–514.

    Article  CAS  Google Scholar 

  22. Skorokhodova, A.Yu., Gulevich, A.Yu., Morzhakova, A.A., et al., Anaerobic Synthesis of succinic acid by recombinant Escherichia coli strains with activated NAD+-reducing pyruvate dehydrogenase complex, Appl. Biochem. Microbiol., 2011, vol. 47, no. 4, pp. 373–380.

    Article  CAS  Google Scholar 

  23. Bologna, F.P., Andreo, C.S., and Drincovich, M.F., Escherichia coli malic enzymes: two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure, J. Bacteriol., 2007, vol. 189, no. 16, pp. 5937–5946. doi 10.1128/JB.00428-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kwon, Y.D., Kwon, O.H., Lee, H.S., and Kim, P., The effect of NADP-dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes, J. Appl. Microbiol., 2007, vol. 103, no. 6, pp. 2340–2345. doi 10.1111/j.1365-2672.2007.03485.x

    Article  PubMed  CAS  Google Scholar 

  25. Hoefel, T., Faust, G., Reinecke, L., et al., Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed-batch-operated stirred tank bioreactors, Biotechnol. J., 2012, vol. 7, no. 10, pp. 1277–1287. doi 10.1002/biot.201200046

    Article  PubMed  CAS  Google Scholar 

  26. Jantama, K., Zhang, X., Moore, J.C., et al., Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C, Biotechnol. Bioeng., 2008, vol. 101, no. 5, pp. 881–893. doi 10.1002/bit.22005

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, X., Wang, X., Shanmugam, K.T., and Ingram, L.O., L-malate production by metabolically engineered Escherichia coli, Appl. Environ. Microbiol., 2011, vol. 77, no. 2, pp. 427–434. doi 10.1128/AEM.01971-10

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by a grant from the Russian Science Foundation (project 16-14-10389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Skorokhodova.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodova, A.Y., Gulevich, A.Y. & Debabov, V.G. Inactivation of Malic Enzymes Improves the Anaerobic Production of Four-Carbon Dicarboxylic Acids by Recombinant Escherichia coli Strains Expressing Pyruvate Carboxylase. Appl Biochem Microbiol 54, 849–854 (2018). https://doi.org/10.1134/S0003683818090065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818090065

Keywords:

Navigation