Skip to main content
Log in

High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Several metabolic engineered Escherichia coli strains were constructed and evaluated for four-carbon dicarboxylic acid production. Fumarase A, fumarase B and fumarase C single, double and triple mutants were constructed in a ldhA adhE mutant background overexpressing the pyruvate carboxylase from Lactococcus lactis. All the mutants produced succinate as the main four-carbon (C4) dicarboxylic acid product when glucose was used as carbon source with the exception of the fumAC and the triple fumB fumAC deletion strains, where malate was the main C4-product with a yield of 0.61–0.67 mol (mole glucose)−1. Additionally, a mdh mutant strain and a previously engineered high-succinate-producing strain (SBS550MG-Cms pHL413-Km) were investigated for aerobic malate production from succinate. These strains produced 40.38 mM (5.41 g/L) and 50.34 mM (6.75 g/L) malate with a molar yield of 0.53 and 0.55 mol (mole succinate)−1, respectively. Finally, by exploiting the high-succinate production capability, the strain SBS550MG-Cms243 pHL413-Km showed significant malate production in a two-stage process from glucose. This strain produced 133 mM (17.83 g/L) malate in 47 h, with a high yield of 1.3 mol (mole glucose)−1 and productivity of 0.38 g L−1 h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    PubMed  Google Scholar 

  2. Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL3488 for increased production of l-malic acid. Appl Microbiol Biotechnol 97:8903–8912

    Article  CAS  PubMed  Google Scholar 

  3. Cao Y, Cao Y, Lin X (2011) Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J Ind Microbiol Biotechnol 38:649–656

    Article  CAS  PubMed  Google Scholar 

  4. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fiume Z (2001) Final report on the safety assessment of malic acid and sodium malate. Int J Toxicol 20(Suppl 1):47–55

    CAS  PubMed  Google Scholar 

  6. Flint DH, Emptage MH, Guest JR (1992) Fumarase a from Escherichia coli: purification and characterization as an iron–sulfur cluster containing enzyme. Biochemistry 31:10331–10337

    Article  CAS  PubMed  Google Scholar 

  7. Guest JR, Miles JS, Roberts RE, Woods SA (1985) The fumarase genes of Escherichia coli: location of the fumB gene and discovery of a new gene (fumC). J Gen Microbiol 131:2971–2984

    CAS  PubMed  Google Scholar 

  8. Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, Ingram LO (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol Bioeng 99:1140–1153

    Article  CAS  PubMed  Google Scholar 

  9. Kronen M, Berg IA (2015) Mesaconase/fumarase FumD in Escherichia coli O157:H7 and promiscuity of Escherichia coli class I fumarases FumA and FumB. PLoS ONE 10(12):e0145098

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin H, Vadali RV, Bennett GN, San K-Y (2004) Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Biotechnol Prog 20:1599–1604

    Article  CAS  PubMed  Google Scholar 

  11. Martinez I, Lee A, Bennett GN, San K-Y (2011) Culture conditions’ impact on succinate production by a high succinate producing Escherichia coli strain. Biotechnol Prog 27:1225–1231

    Article  CAS  PubMed  Google Scholar 

  12. Miles JS, Guest JR (1984) Complete nucleotide sequence of the fumarase gene fumA, of Escherichia coli. Nucleic Acids Res 12:3631–3642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moon SY, Hong SH, Kim TY, Lee SY (2008) Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 40:312–320

    Article  CAS  Google Scholar 

  14. Nelson D, Cox M (2005) Lehninger Principles of Biochemistry, 4th edn. W.H. Freeman and Company, New York, p 612

    Google Scholar 

  15. Sanchez AM, Bennett GN, San K-Y (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol Prog 21:358–365

    Article  CAS  PubMed  Google Scholar 

  16. Sanchez AM, Bennett GN, San K-Y (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng 7:229–239

    Article  CAS  PubMed  Google Scholar 

  17. Sévin DC, Fuhrer T, Zamboni N, Sauer U (2017) Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat Methods 14:187–194

    Article  PubMed  Google Scholar 

  18. Song CW, Kim DI, Choi S, Jang JW, Lee SY (2013) Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol Bioeng 110:2025–2034

    Article  CAS  PubMed  Google Scholar 

  19. Thakker C, Martínez I, Li W, San K-Y, Bennett GN (2015) Metabolic engineering of carbon and redox flow in the production of small organic acids. J Ind Microbiol Biotechnol 42:403–422

    Article  CAS  PubMed  Google Scholar 

  20. Thakker C, Martínez I, San K-Y, Bennett GN (2012) Succinate production in Escherichia coli. Biotechnol J 7:213–224

    Article  CAS  PubMed  Google Scholar 

  21. Thakker C, Zhu J, San K-Y, Bennett GN (2011) Heterologous pyc gene expression under various natural and engineered promoters in Escherichia coli for improved succinate production. J Biotechnol 155:236–243

    Article  CAS  PubMed  Google Scholar 

  22. Tseng CP, Yu C-C, Lin H-H, Chang C-Y, Kuo J-T (2001) Oxygen- and growth rate-dependent regulation of Escherichia coli fumarase (FumA, FumB, and FumC) activity. J Bacteriol 183:461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woods SA, Schwartzbach SD, Guest JR (1988) Two biochemically distinct classes of fumarase in Escherichia coli. Biochim Biophys Acta 954:14–26

    Article  CAS  PubMed  Google Scholar 

  24. Zeikus JG, Jain MK, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    Article  CAS  Google Scholar 

  25. Zelle RM, de Hulster E, Kloenzen W, Pronk JT, van Maris AJA (2010) Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol 76:744–750

    Article  CAS  PubMed  Google Scholar 

  26. Zhang X, Wang X, Shanmugam KT, Ingram O (2011) l-Malate production by metabolic engineering Escherichia coli. Appl Environ Microbiol 77:427–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from grants from the National Institutes of Health (NIH GM090152) and NSF (CBET-0828516). The authors would like to thank Auritra Mallick for performing preliminary experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka-Yiu San.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, I., Gao, H., Bennett, G.N. et al. High yield production of four-carbon dicarboxylic acids by metabolically engineered Escherichia coli . J Ind Microbiol Biotechnol 45, 53–60 (2018). https://doi.org/10.1007/s10295-017-1991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1991-3

Keywords

Navigation