Skip to main content
Log in

Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus

  • Methods
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Analysis of plant behavior under diverse environmental conditions would be impossible without the methods for adequate assessment of the processes occurring in plants. The photosynthetic apparatus and its reaction to stress factors provide a reliable source of information on plant condition. One of the most informative methods based on monitoring the plant biophysical characteristics consists in detection and analysis of chlorophyll a fluorescence. Fluorescence is mainly emitted by chlorophyll a from the antenna complexes of photosystem II (PSII). However, fluorescence depends not only on the processes in the pigment matrix or PSII reaction centers but also on the redox reactions at the PSII donor and acceptor sides and even in the entire electron transport chain. Presently, a large variety of fluorometers from various manufacturers are available. Although application of such fluorometers does not require specialized training, the correct interpretation of the results would need sufficient knowledge for converting the instrumental data into the information on the condition of analyzed plants. This review is intended for a wide range of specialists employing fluorescence techniques for monitoring the physiological plant condition. It describes in a comprehensible way the theoretical basis of light emission by chlorophyll molecules, the origin of variable fluorescence, as well as relations between the fluorescence parameters, the redox state of electron carriers, and the light reactions of photosynthesis. Approaches to processing and analyzing the fluorescence induction curves are considered in detail on the basis of energy flux theory in the photosynthetic apparatus developed by Prof. Reto J. Strasser and known as a “JIP-test.” The physical meaning and relation of each calculated parameter to certain photosynthetic characteristics are presented, and examples of using these parameters for the assessment of plant physiological condition are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AL:

actinic light

Chl:

chlorophyll

CS:

cross section, the unit surface area excited by light in photosynthesizing samples

ETR:

electron transport rate

FL:

fluorescence

LHC:

light-harvesting complex

PAM:

pulse amplitude modulation (fluorometry)

PAR:

photosynthetically active radiation

PSI:

photosystem I

PSII:

photosystem II

OEC:

oxygen- evolving complex

P680:

reaction center of PSII

PPFD:

photosynthetic photon flux density

PSA:

photosynthetic apparatus

RC:

reaction center

References

  1. Tsimilli-Michael, M. and Strasser, R.J., In vivo assessment of stress impact on plants’ vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants, in Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, Varma, A., Ed., Berlin: Springer-Verlag, 2008, vol. 3, pp. 679–703.

    Article  Google Scholar 

  2. Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I., Cetner, M.D., Goltsev, V., Ladle, R.J., Dabrowski, P., and Ahmad, P., The use of chlorophyll fluorescence kinetics analysis to study the performance of photosynthetic machinery in plants, in Emerging Technologies and Management of Crop Stress Tolerance, Vol. 2, A Sustainable Approach, Ahmad, P. and Rasool, S., Eds., New York: Elsevier, 2014, pp. 347–385.

    Chapter  Google Scholar 

  3. Kalaji, H.M., Schansker, G., Ladle, R.J., Goltsev, V., Bosa, K., Allakhverdiev, S.I., Brestic, M., Bussotti, F., Calatayud, A., Dabrowski, P., Elsheery, N.I., Ferroni, L., Guidi, L., Hogewoning, S.W., Jajoo, A., et al., Frequently asked questions about in vivo chlorophyll fluorescence: practical issues, Photosynth. Res., 2014, vol. 122, pp. 121–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalaji, M.H. and Pietkiewicz, S., Some physiological indices to be exploited as a crucial tool in plant breeding, Plant Breed. Seeds Sci., 2004, vol. 49, pp. 19–39.

    Google Scholar 

  5. Murkowski, A., Oddzialywanie czynników stresowych na luminescencje chlorofilu w aparacie fotosyntetycznym roslin uprawnych (Effects of Stress Factors on Chlorophyll Luminescence—Study of Plant Photosynthetic Apparatus), Monogr. 61, Lublin: Inst. Agrofiz. im. Bohdana Dobrzanskiego, Pol. Akad. Nauk, 2002.

    Google Scholar 

  6. Flexas, J., Escalona, J.M., Evain, S., Gulías, J., Moya, I., Osmond, C.B., and Medrano, H., Steadystate chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants, Physiol. Plant., 2002, vol. 114, pp. 231–240.

    Article  CAS  PubMed  Google Scholar 

  7. Mohammed, G.H., Binder, W.D., and Gillies, S.L., Chlorophyll fluorescence: a review of its practical forestry applications and instrumentation, Scand. J. Forest Res., 1995, vol. 10, pp. 383–410.

    Article  Google Scholar 

  8. Jalink, H., van der Schoor, R., Frandas, A., Van Pijlen, J.G., and Bino, R.J., Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed performance, Seed Sci. Res., 1998, vol. 8, pp. 437–443.

    Article  Google Scholar 

  9. Skórska, E., Reakcja wybranych roslin uprawnych na promieniowanie UV-B (The Reaction of Selected Plants Cultivated under UV-B Radiation), Szczecinie: Akademia Rolnicza, 2000 vol. 192.

    Google Scholar 

  10. Kuckenberg, J., Tartachnyk, I., and Noga, G., Evaluation of fluorescence and remission techniques for monitoring changes in peel chlorophyll and internal fruit characteristics in sunlit and shaded sides of apple fruit during shelf-life, Postharvest Biol. Tec., 2008, vol. 48, pp. 231–241.

    Article  CAS  Google Scholar 

  11. Kalaji, M.H. and Guo, P., Chlorophyll fluorescence: a useful tool in barley plant breeding programs, in Photochemistry Research Progress, Sanchez, A. and Gutierrez, S.J., Eds., New York: Nova Science, 2008, pp. 439–463.

    Google Scholar 

  12. Terazima, M., Hirota, N., Braslavsky, S.E., Mandelis, A., Bialkowski, S.E., Diebold, G.J., Miller, R.J.D., Fournier, D., Palmer, R.A., and Tam, A., Quantities, terminology, and symbols in photothermal and related spectroscopies, Pure Appl. Chem., 2004, vol. 76, pp. 1083–1118.

    CAS  Google Scholar 

  13. Braslavsky, S.E., Glossary of terms used in photochemistry 3rd edition, 3rd edition, Pure Appl. Chem., 2007, vol. 79, pp. 293–465.

    CAS  Google Scholar 

  14. Tyystjarvi, E. and Vass, I., Light emission as a probe of charge separation and recombination in the photosynthetic apparatus: relation of prompt fluorescence to delayed light emission and thermoluminescence, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Vol. 19: Papageorgiou, G.C. and Govindjee, Eds., Dordrecht: Springer-Verlag, 2004, pp. 363–388.

    Chapter  Google Scholar 

  15. Neverov, K.V., Santabarbara, S., and Krasnovsky, A.A., Phosphorescence study of chlorophyll d photophysics. Determination of the energy and lifetime of the photo-excited triplet state. Evidence of singlet oxygen photosensitization, Photosynth. Res., 2011, vol. 108, pp. 101–106.

    Article  CAS  PubMed  Google Scholar 

  16. Von Parker, S.A., Photoluminescence of Solutions, New York: Elsevier, 1968.

    Google Scholar 

  17. Björn, L.O., Papageorgiou, G.C., Blankenship, R.E., and Govindjee, A viewpoint: why chlorophyll a? Photosynth. Res., 2009, vol. 99, pp. 85–98.

    Article  PubMed  Google Scholar 

  18. Trissl, H.W., Gao, Y., and Wulf, K., Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton/radical pair equilibrium, Biophys. J., 1993, vol. 64, pp. 984–998.

    Article  Google Scholar 

  19. Lazar, D., Chlorophyll a fluorescence induction, Biochim. Biophys. Acta, 1999, vol. 1412, pp. 1–28.

    Article  CAS  PubMed  Google Scholar 

  20. Govindjee, Sixty-three years since Kautsky: chlorophyll a fluorescence, Aust. J. Plant Physiol., 1995, vol. 22, pp. 131–160.

  21. Strasser, B.J. and Strasser, R.J., Measuring fast fluorescence transients to address environmental questions: the JIP test, in Photosynthesis: from Light to Biosphere, Mathis, P., Ed., Dordrecht: Kluwer, 1995, vol. 5, pp. 977–980.

    CAS  Google Scholar 

  22. Strasser, R.J., Tsimilli-Michael, M., and Srivastava, A., Analysis of the chlorophyll a fluorescence transient, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Vol. 19: Advances in Photosynthesis and Respiration, Papageorgiou, G.C. and Govindjee, Ed., Dordrecht: Springer-Verlag, 2004, pp. 321–362.

    Google Scholar 

  23. Stirbet, A. and Govindjee, A., Chlorophyll a fluorescence induction: a personal perspective of the thermal phase,the J-I-P rise, Photosynth. Res., 2012, vol. 113, pp. 15–61.

    Article  CAS  PubMed  Google Scholar 

  24. Lichtenthaler, H.K. and Rinderle, U., The role of chlorophyll fluorescence in the detection of stress conditions in plants, CRC Crit. Rev. Anal. Chem., 1988, vol. 19, pp. 29–85.

    Article  Google Scholar 

  25. Kautsky, H. and Hirsch, A., Neue Versuche zur Kohlensäureassimilation, Naturwissenschaften, 1931, vol. 19, pp. 964–964.

    Article  CAS  Google Scholar 

  26. Papageorgiou, G., Chlorophyll fluorescence: an intrinsic probe of photosynthesis, Bioenergetics of Photosynthesis, Govindjee, Ed., New York: Academy Press, 1975, pp. 319–371.

    Google Scholar 

  27. Kalaji, H., Goltsev, V., Bosa, K., Allakhverdiev, S.I., and Strasser, R., Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker, Photosynth. Res., 2012, vol. 114, pp. 69–96.

    Article  CAS  PubMed  Google Scholar 

  28. Schreiber, U., Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview, in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Vol. 19: Advances in Photosynthesis and Respiration, Papageorgiou, G.C. and Govindjee, Eds., Dordrecht: Springer-Verlag, 2004, pp. 279–319.

  29. Strasser, R.J., Srivastava, A., and Tsimilli-Michael, M., The fluorescence transient as a tool to characterize and screen photosynthetic samples, in Probing Photosynthesis: Mechanism, Regulation and Adaptation, Mohanty, P., Pathre, U., and Mohanty, P., Eds., London: Taylor & Francis, 2000, pp. 443–480.

    Google Scholar 

  30. Krause, G.H. and Weis, E., Chlorophyll fluorescence and photosynthesis: the basics, Annu Rev. Plant Physiol., 1991, vol. 42, pp. 313–349.

    Article  CAS  Google Scholar 

  31. Strasser, R. and Govindjee, The F0 and the O-J–I–P fluorescence rise in higher plants and algae, in Regulation of Chloroplast Biogenesis, Argyroudi-Akoyunoglou, J.H., Ed., New York: Plenum Press, 1991, pp. 423–426.

    Google Scholar 

  32. Strasser, R., On the O-J-I-P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii, Research in Photosynthesis, Murata, N, Ed., Dordrecht: Kluwer Academic Publ., 1992, vol. 2, pp. 29–32.

    CAS  Google Scholar 

  33. Papageorgiou, G. and Govindjee, Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans, Biophys. J., 1968, vol. 8, pp. 1299–1315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Papageorgiou, G. and Govindjee, Light-induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa, Biophys. J., 1968, vol. 8, pp. 1316–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duysens, L.N.M. and Sweers, H.E., Mechanism of two photochemical reaction in algae as studied by means of fluorescence, in Studies on Microalgae and Photosynthetic Bacteria, Ashida, J., Ed., Tokyo: Tokyo Univ. Press, 1963, pp. 353–372.

    Google Scholar 

  36. Butler, W.L., Fluorescence yield in photosynthetic systems and its relation to electron transport, in Current Topics in Bioenergetics, Sanadi, D.R., Ed., New York: Academic, 1966, pp. 49–73.

    Google Scholar 

  37. Schatz, G.H., Brock, H., and Holzwarth, A.R., A kinetic and energetic model for the primary processes in photosystem II, Biophys. J., 1988, vol. 54, pp. 397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dau, H., Molecular mechanisms and quantitative models of variable PSII fluorescence, Photochem. Photobiol., 1994, vol. 60, pp. 1–23.

    Article  CAS  Google Scholar 

  39. Butler, W.L., Energy distribution in the photochemical apparatus of photosynthesis, Annu. Rev. Plant Physiol., 1978, vol. 29, pp. 345–378.

    Article  CAS  Google Scholar 

  40. Nuijs, A.M., Shuvalov, V.A., Van Gorkom, H.J., and Duysens, L.N.M., Picosecond absorbance-difference spectroscopy on the primary reactions and the antenna-excited states in photosystem I particles, Biophys. Biochim. Acta, 1986, vol. 850, pp. 310–318.

    Article  CAS  Google Scholar 

  41. Franck, F., Juneau, P., and Popovic, R., Resolution of the photosystem I and photosystem IIcontributions to chlorophyll fluorescence of intact leaves at room temperature, Biochim. Biophys. Acta, 2002, vol. 1556, pp. 239–246.

    Article  CAS  PubMed  Google Scholar 

  42. Van Grondelle, R., Dekker, J., Gillbro, T., and Sundstrom, V., Energy transfer and trapping in photosynthesis, Biochim. Biophys. Acta–Bioenergetics, 1994, vol. 1187, pp. 1–65.

    Article  CAS  Google Scholar 

  43. Klimov, V.V., Allakhverdiev, S.I., and Pashchenko, V.Z., Measurement of activation energy and life time of fluorescence of photosystem II chlorophyll, Dokl. Akad. Nauk SSSR, 1978, vol. 242, pp. 1204–1205.

    CAS  Google Scholar 

  44. Allakhverdiev, S.I., Klimov, V.V., and Carpentier, R., Variable thermal emission and chlorophyll fluorescence in photosystem II particles, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 281–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gibasiewicz, K., Dobek, A., Breton, J., and Leibl, W., Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor Q(A), Biophys. J., 2001, vol. 80, pp. 1617–1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strasser, R.J., Tsimilli-Michael, M., Qiang, S., and Goltsev, V., Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis, Biochim. Biophys. Acta, 2010, vol. 1797, pp. 1313–1326.

    Article  CAS  PubMed  Google Scholar 

  47. Schreiber, U., Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer, Photosynth. Res., 1986, vol. 9, pp. 261–272.

    Article  CAS  PubMed  Google Scholar 

  48. Maxwell, K. and Johnson, G.N., Chlorophyll fluorescence–a practical guide, J. Exp. Bot., 2000, vol. 51, pp. 659–668.

    Article  CAS  PubMed  Google Scholar 

  49. Van Kooten, O. and Snel, J.H., The use of chlorophyll fluorescence nomenclature in plant stress physiology, Photosynth. Res., 1990, vol. 25, pp. 147–150.

    Article  PubMed  Google Scholar 

  50. Baker, N.R. and Rosenquist, E., Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, J. Exp. Bot., 2004, vol. 55, pp. 1607–1621.

    Article  CAS  PubMed  Google Scholar 

  51. Chlorophyll Fluorescence, Hansatech Instruments, 2008. http://www.hansatech-instruments.co.uk.

  52. Lichtenthaler, H., Buschmann, C., and Knapp, M., Measurement of chlorophyll fluorescence kinetics (Kautsky effect) and the chlorophyll fluorescence decrease ratio (RFd-values) with the PAM-fluorometer, in Analytical Methods in Plant Stress Biology, Filek, M., Biesaga-Kocielniak, J., and Marciska, I., Eds., Krakow: Franciszek Gorski Inst. Plant Physiol., Pol. Acad. Sci., 2004, pp. 93–111.

    Google Scholar 

  53. Havaux, M., Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures, Plant Cell Environ., 1993, vol. 16, pp. 461–467.

    Article  Google Scholar 

  54. Kalaji, M. and Rutkowska, A., Reactions of photosynthetic apparatus of maize seedlings to salt stress, Zesz. Probl. Postepow Nauk Roln., 2004, vol. 496, pp. 545–558.

    Google Scholar 

  55. An Introduction to Fluorescence Measurements with the Plant Efficiency Analyser (PEA), Hansatech Instruments, 1996. http://www.hansatech-instruments.co.uk.

  56. Reigosa, R.M.J. and Weiss, O., Fluorescence techniques, in Handbook of Plant Ecophysiology Techniques, Reigosa, R.M., Ed., Dordrecht: Kluwer, 2001, pp. 155–171.

    Chapter  Google Scholar 

  57. Pereira, W.E., De Siqueira, D.L., Martínez, C.A., and Puiatti, M., Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress, J. Plant Physiol., 2000, vol. 157, pp. 513–520.

    Article  CAS  Google Scholar 

  58. Björkman, O. and Demmig, B., Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins, Planta, 1987, vol. 170, pp. 489–504.

    Article  PubMed  Google Scholar 

  59. Basu, P.S., Sharma, A., and Sukumaran, N.P., Changes in net photosynthetic rate and chlorophyll fluorescence in potato leaves induced by water stress, Photosynthetica, 1998, vol. 35, pp. 13–19.

    Article  Google Scholar 

  60. He, J., Chee, C.W., and Goh, C.J., ’Photoinhibition’ of Heliconia under natural tropical conditions: the importance of leaf orientation for light interception and leaf temperature, Plant Cell Environ., 1996, vol. 19, pp. 1238–1248.

    Article  Google Scholar 

  61. Mir, N.A., Perez, R., and Beaudry, R.M. Chlorophyll fluorescence and whole fruit senescence in ‘Golden Delicious’ apple, Int. Postharvest Sci. Conf. Postharvest 96, Taupo, New Zealand, August 4–9, 1996, Bieleski, R., Laing, W., and Clark, C., Eds., Taupo, 1996.

  62. Jajoo, A., Bharti, S., and Govindjee, Inorganic anions induce state changes in spinach thylakoid membranes, FEBS Lett., 1998, vol. 434, pp. 193–196.

    Article  CAS  PubMed  Google Scholar 

  63. Pokorska, B. and Romanowska, E., Photoinhibition and D1 protein degradation in mesophyll and agranal bundle sheath thylakoids of maize, Funct. Plant Biol., 2007, vol. 34, pp. 844–852.

    Article  CAS  Google Scholar 

  64. Souza, R.P., Machado, E.C., Silva, J.A.B., Lagôa, A.M.M.A., and Silveira, J.A.G., Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery, Environ. Exp. Bot., 2004, vol. 51, pp. 45–56.

    CAS  Google Scholar 

  65. Seppänen, M.M., Characterization of freezing tolerance in Solanum commersonii (Dun.) with special reference to the relationship between freezing and oxidative stress, Acad. Diss., Helsinki: Univ. Helsinki, 2000, no. 56.

  66. Schreiber, U., Bilger, W., and Neubauer, C., Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis, in Ecophysiology of Photosynthesis, Schulze, E.D. and Caldwell, M., Eds., Berlin: Springer-Verlag, 1995, vol. 100, pp. 49–70.

    Google Scholar 

  67. Fracheboud, Y., Using Chlorophyll Fluorescence to Study Photosynthesis, Zurichh: Inst. Plant Sci., 2006, http://jaguar.fcav.unesp.br/download/deptos/biologia/durvalina/TEXTO-71.pdf.

    Google Scholar 

  68. Croxdale, J.G. and Omasa, K., Patterns of chlorophyll fluorescence kinetics in relation to growth and expansion in cucumber leaves, Plant Physiol., 1990, vol. 93, pp. 1083–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rinderle, U. and Lichtenthaler, H.K., The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator, in Applications of Chlorophyll Fluorescence, Lichtenthaler, H.K., Ed., Dordrecht: Kluwer Academic Publ., 1988, pp. 189–196.

    Google Scholar 

  70. Strasser, R.J., A concept for stress and its application in remote sensing, in Applicationf of Chlorophyll Fluorescence, Lichtenthaler, H.K., Ed., Dordrecht: Kluwer, 1988, pp. 333–337.

    Google Scholar 

  71. Genty, B., Briantais, J.-M., and Baker, N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 1989, vol. 990, pp. 87–92.

    Article  CAS  Google Scholar 

  72. Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A., and Baker, N.R., Relationship between CO2 assimilation, photosynthetic electron transport,and active O2 metabolism in leaves of maize in the field during periods of low temperature, Plant Physiol., 1998, vol. 116, pp. 571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Flexas, J., Bota, J., Escalona, J.M., Sampol, B., and Medrano, H., Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations, Funct. Plant Biol., 2002, vol. 29, pp. 461–471.

    Article  Google Scholar 

  74. Andrews, J.R., Fryer, M.J., and Baker, N.R., Characterization of chilling effects on photosynthetic performance of maize crops during early season growth using chlorophyll fluorescence, J. Exp. Bot., 1995, vol. 46, pp. 1195–1203.

    Article  CAS  Google Scholar 

  75. Koscielniak, J. and Biesaga-Koscielniak, J., Effects of exposure to short periods of suboptimal temperature during chili (5 degrees C) on gas exchange and chlorophyll fluorescence in maize seedlings (Zea mays L.), J. Agron. Crop Sci., 1999, vol. 183, pp. 231–241.

    Article  CAS  Google Scholar 

  76. Schindler, C. and Lichtenthaler, H.K., Photosynthetic CO2-assimilation, chlorophyll fluorescence and zeaxanthin accumulation in field grown maple trees in the course of a sunny and a cloudy day, J. Plant Physiol., 1996, vol. 148, pp. 399–412.

    CAS  Google Scholar 

  77. Fracheboud, Y. and Leipner, J., The application of chlorophyll fluorescence to study light, temperature, and drought stress, in Practical Applications of Chlorophyll Fluorescence in Plant Biology, DeEll, J. and Toivonen, P.A., Eds., New York: Springer-Verlag, 2003, pp. 125–150.

  78. Kalaji, M.H., Woejko, E., Loboda, T., Pietkiewicz, S., and Wyszyski, Z., Chlorophyll fluorescence–a new tool to assess the photosynthesis in barley plants growing at different doses of nitrogen, Zesz. Probl. Postepow Nauk Roln., 2004, vol. 496, pp. 375–383 [in Polish].

    Google Scholar 

  79. Hartel, H., Lokstein, H., Grimm, B., and Rank, B., Kinetic studies on the xanthophyll cycle in barley leaves, Plant Physiol., 1996, vol. 110, pp. 471–482.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rosenqvist, E. and Van Kooten, O., Chlorophyll fluorescence: a general description and nomenclature, in Practical Applications of Chlorophyll Fluorescence in Plant Biology, DeEll, J.R. and Toivonen, P.M.A., Eds., Dordrecht: Kluwer, 2003, pp. 31–77.

    Chapter  Google Scholar 

  81. Kramer, D.M., Cruz, J.A., and Kanazawa, A., Balancing the central roles of the thylakoid proton gradient, Trends Plant Sci., 2003, vol. 8, pp. 27–32.

    Article  CAS  PubMed  Google Scholar 

  82. Demmig-Adams, B., Adams, W.W., Barker, D.H., Logan, B.A., Bowling, D.R., and Verhoeven, A.S., Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation, Physiol. Plant., 1996, vol. 98, pp. 253–264.

    Article  CAS  Google Scholar 

  83. Bilger, W. and Björkman, O., Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis, Photosynth. Res., 1990, vol. 25, pp. 173–185.

    CAS  PubMed  Google Scholar 

  84. Maxwell, K., Björkman, O., and Leegood, R., Too many photons: photorespiration, photoinhibition and photooxidation, Trends Plant Sci., 1997, vol. 2, pp. 119–121.

    Article  Google Scholar 

  85. Niyogi, K.K., Grossman, A.R., and Björkman, O., Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion, Plant Cell, 1998, vol. 10, pp. 1121–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kovar, M., Brestic, M., and Olsovska, K., Chlorophyll a fluorescence as a bioindicator of the plant environmental stress, Acta Fytotechn. Zootechn., 2001, vol. 4, special issue, pp. 126–127.

    Google Scholar 

  87. Strasser, R.J., The grouping model of plant photosynthesis, in Chloroplast Development, Akoyunoglou, G., Ed., Amsterdam: Elsevier, 1978, pp. 513–524.

    Google Scholar 

  88. Strasser, R.J., The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids photosynthesis III, in Structure and Molecular Organisation of the Photosynthetic Apparatus, Akoyunoglou, G., Ed., Philadelphia: Balaban Int. Sci. Services, 1981, pp. 727–737.

    Google Scholar 

  89. Antal, T. and Rubin, A., In vivo analysis of chlorophyll a fluorescence induction, Photosynth. Res., 2008, vol. 96, pp. 217–226.

    Article  CAS  PubMed  Google Scholar 

  90. Tsimilli-Michael, M. and Strasser, R., The energy flux theory 35 years later: formulations and applications, Photosynth. Res., 2013, vol. 117, pp. 289–320.

    Article  CAS  PubMed  Google Scholar 

  91. Srivastava, A., Strasser, R.J., and Govindjee, Greening of peas: parallel measurements of 77 K emission spectra, OJIP chlorophyll a fluorescence transient, period four oscillation of the initial fluorescence level, delayed light emission, and P700, Photosynthetica, 1999, vol. 37, pp. 365–392.

    Article  CAS  Google Scholar 

  92. Strasser, R.J., Tsimilli-Michael, M., and Srivastava, A., Analysis of the chlorophyll a fluorescence transient, in in Chlorophyll a Fluorescence: A Signature of Photosynthesis, Vol. 19: ? dvances in Photosynthesis and Respiration, Papageorgiou, G.C. and Govindjee, Eds., Dordrecht: Kluwer Academic Publ., 2005, pp. 321–362.

    Google Scholar 

  93. Oukarroum, A., Goltsev, V., and Strasser, R.J., Temperature effects on pea plants probed by simultaneous measurements of the kinetics of prompt fluorescence, delayed fluorescence and modulated 820 nm reflection, PloS One, 2013, vol. 8, p. e59433. doi 10.1371/journal.pone.0059433

    CAS  PubMed  Google Scholar 

  94. Krüger, G.H.J., Tsimilli-Michael, M., and Strasser, R.J., Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves, Physiol. Plant., 1997, vol. 101, pp. 265–277.

    Article  Google Scholar 

  95. Tsimilli-Michael, M., Eggenberg, P., Biro, B., Köves-Pechy, K., Vörös, I., and Strasser, R., Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P, Appl. Soil Ecol., 2000, vol. 15, pp. 169–182.

    Google Scholar 

  96. Kalaji, H., Goltsev, V., Brestic, M., Bosa, K., Allakhverdiev, S.I., and Strasser, R.J., In vivo measurements of light emission in plants, in Photosynthesis: Open Questions and What We Know Today, Allakhverdiev, S., Rubin, A., and Shuvalov, V., Eds., Moscow: Inst. Computer Sci., 2014, pp. 1–40.

    Google Scholar 

  97. Goltsev, V., Zaharieva, I., Chernev, P., Kouzmanova, M., Kalaji, H.M., Yordanov, I., Krasteva, V., Alexandrov, V., Stefanov, D., Allakhverdiev, S.I., and Strasser, R.J., Drought induced modifications of photosynthetic electron transport in intact leaves: analysis and use of neural networks as a tool for a rapid non-invasive estimation, Biochim. Biophys. Acta, 2012, vol. 1817, pp. 1490–1498.

    Article  CAS  PubMed  Google Scholar 

  98. Goltsev, V.N., Kalaji, M.H., Kuzmanova, M.A., and Allakhverdiev, S.I., Peremennaya i zamedlennaya fluorestsentsiya khlorofilla a–teoreticheskie osnovy i prakticheskoe prilozhenie v issledovanii rastenii (The Variable and Delayed Fluorescence of Chlorophyll a–Theoretical Foundations and Practical Application in Plant Research), Moscow: Inst. Komp’yuternykh Issled., 2014.

    Google Scholar 

  99. Samborska, I.A., Alexandrov, V., Sieczko, L., Kornatowska, B., Goltsev, V., Cetner, M.D., and Kalaji, H.M., Artificial neural networks and their application in biological and agricultural research, J. NanoPhotoBioSciences, 2014, vol. 2, pp. 14–30.

    Google Scholar 

  100. Kalaji, H.M., Oukarroum, A., Alexandrov, V., Kouzmanova, M., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Allakhverdiev, S.I., and Goltsev, V., Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements, Plant Physiol. Biochem., 2014, vol. 81, pp. 16–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Goltsev.

Additional information

Original Russian Text © V.N. Goltsev, H.M. Kalaji, M. Paunov, W. Bąba, T. Horaczek, J. Mojski, H. Kociel, S.I. Allakhverdiev, 2016, published in Fiziologiya Rastenii, 2016, Vol. 63, No. 6, pp. 881–907.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goltsev, V.N., Kalaji, H.M., Paunov, M. et al. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63, 869–893 (2016). https://doi.org/10.1134/S1021443716050058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716050058

Keywords

Navigation