Skip to main content

Chlorophyll Fluorescence: A Practical Approach to Study Ecophysiology of Green Plants

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

Photosynthesis is the primary solar harvesting system on earth. The photosynthetic process absorbs solar energy and transduces into organic chemical bond energy. Light energy that is absorbed by photosynthetic pigments in chloroplasts elicits several competing processes out of which the process of photochemistry, and dissipated of heat or emitted as fluorescence emission are important for the measurement of quantum efficiency of photosynthesis. So, measuring any of these three will give a relative quantitative picture about the photosynthetic function of plants under a given environment. In the present review, the methods for measuring photosynthetic efficiency of plants through different fluorescence measurement techniques are ellucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera J, Jimenez C, Figueroa FL, Lebert M, Hader DP (1999) Effect of ultraviolet radiation on thallus absorption and photosynthetic pigments in the red alga Porphyra umbilicalis. J Photochem Photobiol B Biol 48:75–82

    Article  CAS  Google Scholar 

  • Albert KR, Mikkelsen TN, Ro-Poulsen H (2005) Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll-a fluorescence parameters from fluorescence transients. Physiol Plant 124:208–226

    Article  CAS  Google Scholar 

  • Apostolova E, Dobrikova AG, Rashkov GD, Dankov KG, Vladkova RS, Misra AN (2011) Prolonged sensitivity of immobilized thylakoid membranes in cross-linked matrix to atrazine. Sensors Actuators B 156:140–146

    Article  CAS  Google Scholar 

  • Apostolova EL, Rashkov G, Misra AN, Pouneva I, Dankov K (2014) Effect of UV-B radiation on photosystem II functions in Antarctic and mesophilic strains of a green alga Chlorella vulgaris and a cyanobacterium Synechocystis salina. Indian J Plant Physiol 19:111–118

    Article  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:659–668

    Article  CAS  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  PubMed  CAS  Google Scholar 

  • Beneragama CK, Balasooriya BLHN, Perera TMRS (2014) Use of O-J-I-P chlorophyll fluorescence transients to probe multiple effects of UV-C radiation on the photosynthetic apparatus of Euglena. Int J Appl Sci Biotechnol 2:553–558

    Article  Google Scholar 

  • Bernat G, Steinbach G, Kaňa R, Govindjee MAN, Prašil O (2018) On the origin of the slow M–T chlorophyll a fluorescence decline in cyanobacteria: interplay of short-term light-responses. Photosynth Res 136:183. https://doi.org/10.1007/s11120-017-0458-8

    Article  PubMed  CAS  Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25:173–185

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  CAS  Google Scholar 

  • Boureima S, Oukarroum A, Diouf M, Cisse N, Van Damme P (2012) Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot 81:37–43

    Article  CAS  Google Scholar 

  • Brestic M, Zivcak M (2013) PSII Fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications. In: Molecular stress physiology of plants. Springer, Berlin, pp 87–131

    Chapter  Google Scholar 

  • Brestic M, Zivcak M, Kalaji MH, Carpentier R, Allakhverdiev SI (2012) Photosystem II thermostability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105

    Article  PubMed  CAS  Google Scholar 

  • Brestic M, Zivcak M, Olsovska K, Repkova J (2013) Involvement of chlorophyll a fluorescence analyses for identification of sensitiveness of the photosynthetic apparatus to high temperature in selected wheat genotypes. In: Photosynthesis research for food, fuel and the future. Springer, Berlin, pp 510–513

    Chapter  Google Scholar 

  • Buschmann C (2007) Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth Res 92:261–271

    Article  PubMed  CAS  Google Scholar 

  • Butler WL, Kitajima M (1975) Fluorescence quenching in photosystem II of chloroplasts. Biochim Biophys Acta 376:116–125

    Article  PubMed  CAS  Google Scholar 

  • Ceppi MG, Oukarroum A, Cicek N, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288

    Article  PubMed  CAS  Google Scholar 

  • Chen LS, Li P, Cheng L (2009) Comparison of thermotolerance of sun-exposed peel and shaded peel of ‘Fuji’ apple. Environ Exp Bot 66:110–116

    Article  CAS  Google Scholar 

  • Dankov K, Rashkov G, Misra AN, Apostolova EL (2014) Temperature sensitivity of photosystem II in isolated thylakoid membranes from fluridone treated pea leaves. Turk J Bot 39:420–428. https://doi.org/10.3906/bot-1407-46

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Gilmore AM, Adams WW III (1996) In vivo functions of carotenoids in higher plants. FASEB J 10:403–412

    Article  PubMed  CAS  Google Scholar 

  • Dobrikova A, Vladkova R, Rashkov G, Busheva M, Taneva SG, Misra AN, Apostolova E (2009) Assessment of sensitivity of photosynthetic oxygen evolution and chlorophyll florescent parameters to copper for use in biosensors. C R Acad Bulg Sci 62:723–728

    CAS  Google Scholar 

  • Dudeja SS, Chaudhary P (2005) Fast chlorophyll fluorescence transient and nitrogen fixing ability of chickpea nodulation variants. Photosynthetica 43:253–259

    Article  CAS  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, 484 pp

    Google Scholar 

  • Finazzi G, Johnson GN, Dall’Osto L, Zito F, Bonente G, Bassi R, Wollman FA (2006) Non-photochemical quenching of chlorophyll fluorescence in Chlamydomonas reinhardtii. Biochemistry 45:1490–1498

    Article  PubMed  CAS  Google Scholar 

  • Force L, Critchly C, Van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants. 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth Res 78:17–33

    Article  PubMed  CAS  Google Scholar 

  • Fracheboud Y, Leipner J (2003) The application of chlorophyll fluorescence to study light, temperature, and drought stress. In: JR DE, PMA T (eds) Practical applications of chlorophyll fluorescence in plant biology. Kluwer Academic Publishers, Dordrecht, pp 125–150

    Chapter  Google Scholar 

  • Frank HA, Cua A, Chynwat V, Young A, Gosztola D, Wasielewski MR (1994) Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth Res 41:389–395

    Article  PubMed  CAS  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giardi MT, Pace E (2005) Photosynthetic proteins for technological applications. Trends Biotech 23:257–263

    Article  CAS  Google Scholar 

  • Gomes MTG, da Luz AC, dos Santos MR, Batitucci MDCP, Silva DM, Falqueto AR (2012) Drought tolerance of passion fruit plants assessed by the OJIP chlorophyll a fluorescence transient. Sci Hortic 142:49–56

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 1–41

    Chapter  Google Scholar 

  • Guha A, Sengupta D, Reddy AR (2013) Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J Photochem Photobiol B 119:71–83

    Article  PubMed  CAS  Google Scholar 

  • Guisse B, Srivastava A, Strasser RJ (1995) The polyphasic rise of the chlorophyll a fluorescence (OKJIP) in heat stressed leaves. Arch Sci Geneve 48:147–160

    CAS  Google Scholar 

  • Han S, Tang N, Jiang H-X, Yang L-T, Li Y, Chen L-S (2009) CO2 assimilation, photosystem II photochemistry, carbohydrate metabolism and antioxidant system of citrus leaves in response to boron stress. Plant Sci 176:143–153

    Article  CAS  Google Scholar 

  • He Y, Zhu Z, Yang J, Ni X, Zhu B (2009) Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot 66:270–278

    Article  CAS  Google Scholar 

  • Horton P, Ruba AV, Walters RG (1994) Regulation of light harvesting in green plants. Plant Physiol 106:415–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ilik P, Schansker G, Kotabova E, Vaczi P, Strasser RJ, Bartak M (2006) A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possesing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20

    Article  PubMed  CAS  Google Scholar 

  • Janeczko A, Koscielniak J, Pilipowicz M, Szarek-Lukaszewska G, Skoczowski A (2005) Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 43:293–298

    Article  CAS  Google Scholar 

  • Jedmowski C, Ashoub A, Brüggemann W (2013) Reactions of Egyptian landraces of Hordeum vulgare and Sorghum bicolor to drought stress, evaluated by the OJIP fluorescence transient analysis. Acta Physiol Plant 35:345–354

    Article  Google Scholar 

  • Jiang H–X, Tang N, Zheng J–G, Chen L-S (2009) Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol 9:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson GN, Yong AJ, Scholes JD, Horton P (1993) The dissipation of excess excitation energy in British plant species. Plant Cell Environ 16:673–679

    Article  CAS  Google Scholar 

  • Kalaji HM, Łoboda T (2007) Photosystem II of barley seedlings under cadmium and lead stress. Plant Soil Environ 53:511–516

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M, Bussotti F, Calatayud A, Dąbrowski P, Elsheery NI, Ferroni L, Guidi L, Hogewoning SW, Jajoo A, Misra AN, Nebauer SG, Pancaldi S, Penella C, Poli DB, Pollastrini M, Romanowska-Duda ZB, Rutkowska B, Serôdio J, Suresh K, Szulc W, Tambussi E, Yanniccari M, Zivcak M (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158. https://doi.org/10.1007/s11120-014-0024-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalaji HM, Oukarroum A, Alexandrov V et al (2014a) Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol Biochem 81:16–25

    Article  PubMed  CAS  Google Scholar 

  • Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102

    Article  CAS  Google Scholar 

  • Kalaji HM, Schansker Brestic M, Bussotti F, Calatayud A, Ferroni L, Goltsev V, Guidi L, Jajoo A, Li P, Losciale P, Mishra VK, Misra AN, Nebauer SG, Pancaldi S, Pancaldi S, Penella C, Pollastrini M, Suresh K, Tambussi E, Yanniccari M, Zivcak M, Cetner MD, Samborska IA, Stirbet A, Olsovska K, Kunderlikova K, Shelonzek H, Rusinowski S, Baba W (2017a) Frequently asked questions about in vivo chlorophyll fluorescence, the sequel. Photosynth Res 132:13–66

    Article  PubMed  CAS  Google Scholar 

  • Kalaji HM, Bąba W, Gediga K, Goltsev V, Samborska IA, Cetner MD, Dimitrova S, Piszcz U, Bielecki K, Karmowska K, Dankov K, Kompała-Bąba A (2017b) Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth Res 136:329. https://doi.org/10.1007/s11120-017-0467-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kautsky H, Hirsch A (1931) Neue Versuche zur Kohlensaure assimilation. Naturwissenschaften 19:964

    Article  CAS  Google Scholar 

  • Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromo-thymoquinone. Biochim Biophys Acta 376:105–115

    Article  PubMed  CAS  Google Scholar 

  • Koblizek M, Masojidek J, Komenda J, Kusera T, Pilloton R, Mattoo AK, Giardi MT (1998) A sensitive photosystem II based biosensor for detection of a class of herbicides. Biotech Bioenerg 60:664–669

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kruger GHT, Tsmilli-Michael M, Strasser RJ (1997) Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camelia leaves. Physiol Plant 101:265–277

    Article  CAS  Google Scholar 

  • Latimer P, Bannister TT, Rabinowitch E (1956) Quantum yields of fluorescence of plant pigments. Science 124:585–586

    Article  PubMed  CAS  Google Scholar 

  • Lauriano JA, Ramalho JC, Lidon FC, Ce’umatos M (2006) Mechanisms of energy dissipation in peanut under water stress. Photosynthetica 44:404–410

    Article  CAS  Google Scholar 

  • Laza’r D (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct Plant Biol 33:9–30

    Article  Google Scholar 

  • Laza’r D, Jablonsky J (2009) On the approaches applied in formulation of a kinetic model of photosystem II: different approaches lead to different simulations of the chlorophyll a fluorescence transients. J Theor Biol 257:260–269

    Article  CAS  Google Scholar 

  • Li G, Zhang ZS, Gao HY, Liu P, Dong ST, Zhang JW, Zhao B (2012) Effects of nitrogen on photosynthetic characteristics of leaves from two different stay-green corn (Zea mays L.) varieties at the grain-filling stage. Can J Plant Sci 92:671–680

    Article  CAS  Google Scholar 

  • Liu WJ, Chen YE, Tian WJ, Du JB, Zhang ZW, Xu F, Zhang F, Yuan S, Lin HH (2009) Dephosphorylation of photosystem II proteins and phosphorylation of CP29 in barley photosynthetic membranes as a response to water stress. Biochim Biophys Acta 1787:1238–1245

    Article  PubMed  CAS  Google Scholar 

  • Manes F, Donato E, Vitale M (2001) Physiological response of Pinus halepensis needles under ozone and water stress conditions. Physiol Plant 113:249–257

    Article  PubMed  CAS  Google Scholar 

  • Mathur S, Mehta P, Jajoo A, Bharti S (2011a) Analysis of elevated temperature induced inhibition of Photosystem II using Chl a fluorescence induction kinetics. Plant Biol 13:1–6

    Article  PubMed  CAS  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011b) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    Article  PubMed  CAS  Google Scholar 

  • Mathur S, Agrawal D, Jajoo A (2014) Photosynthesis: limitations in response to high temperature stress. J Photochem Photobiol B Biol 137:116. https://doi.org/10.1016/j.jphotobiol.2014.01.010

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Maxwell DP, Falk S, Trick CG, Huner N (1994) Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol 105:535–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  PubMed  CAS  Google Scholar 

  • Misra AN, Terashima I (2003) Changes in photosystem activities during adaptation of Vicia faba seedlings to low, moderate and high temperatures. Plant cell physiology. In: Abstract, annual symposium JSPP, Nara, Japan 27–29 March 2003

    Google Scholar 

  • Misra AN, Srivastava A, Strasser RJ (2001a) Utilisation of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and brassica seedlings. J Plant Physiol 158:1173–1181

    Article  CAS  Google Scholar 

  • Misra AN, Srivastava A, Strasser RJ (2001b) Fast chlorophyll a fluorescence kinetic analysis for the assessment of temperature and light effects: a dynamic model for stress recovery phenomena. Photosynthsis: PS2001. CSIRO Publishers, Melbourne S3–007

    Google Scholar 

  • Misra AN, Latowski D, Strzalka K (2003) De-epoxidation state of lutein and violaxanthin in the seedlings of salt sensitive and salt tolerant plants grown under NaCl salt stress. Plant Biology, Honolulu, Hawaii, USA, 25–30 July 2003

    Google Scholar 

  • Misra AN, Latowski D, Strzalka K (2006) The xanthophylls cycle activity in kidney bean and cabbage leaves under salinity stress. Russ J Plant Physiol 53:102–109

    Article  CAS  Google Scholar 

  • Misra AN, Srivastava A and Strasser RJ (2007) Elastic and plastic responses of Vicia faba leaves to high temperature and high light stress. Gordon Conference on “Temperature stress in plants”, Ventura, USA 25–30 Jan 2007

    Google Scholar 

  • Misra AN, Latowski D, Strzalka K (2011) Violaxanthin de-epoxidation in aging cabbage (Brassica oleracea L.) leaves play as a sensor for photosynthetic excitation pressure. J Life Sci 5:182–191

    CAS  Google Scholar 

  • Misra AN, Misra M, Singh R (2012) Chlorophyll fluorescence in plant biology. In: Misra AN (ed) Biophysics. Intech Open, pp 171–192. http://www.intechopen.com

  • Misra AN, Vladkova R, Singh R, Misra M, Dobrikova AG, Apostolova EL (2014) Action and target sites of nitric oxide in chloroplasts. Nitric Oxide 39:35–45

    Article  PubMed  CAS  Google Scholar 

  • Molassiotis A, Tanou G, Diamantidis G, Patakas A, Therios I (2006) Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance. J Plant Physiol 163:176–185

    Article  PubMed  CAS  Google Scholar 

  • Muller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niyogi KK, Bjorkman O, Grossman AR (1997) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noomnarm U, Clegg R (2009) Fluorescence lifetimes: fundamentals and interpretations. Photosynth Res 101:181–194

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum S, Geissmann M, Eggenberg P, Strasser RJ, Fuhrer J (2001) Ozone sensitivity in herbaceous species as assessed by direct and modulated chlorophyll fluorescence techniques. J Plant Physiol 158:757–766

    Article  CAS  Google Scholar 

  • Oukarroum A, Madidi SE, Schansker G, Strasser RJ (2007) Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and rewatering. Environ Exp Bot 60:438–446

    Article  CAS  Google Scholar 

  • Oukarroum A, Schansker G, Strasser RJ (2009) Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol Plant 137:188–199

    Article  PubMed  CAS  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components: calculation of qP and Fv’/Fm’ without measuring Fo. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Öz MT, Turan Ö, Kayihan C, Eyidoğan F, Ekmekçi Y, Yücel M, Öktem HA (2014) Evaluation of photosynthetic performance of wheat cultivars exposed to boron toxicity by the JIP fluorescence test. Photosynthetica 52:555–563

    Article  CAS  Google Scholar 

  • Paoletti E, Bussotti F, Della Rocca G, Lorenzini G, Nali C, Strasser RJ (2004) Fluorescence transient in ozonated Mediterranean shrubs. Phyton Annales Rei Botanicae 44:121–131

    Google Scholar 

  • Rabinowitch E, Govindjee (1969) Photosynthesis. Wiley, New York, 273 pp

    Google Scholar 

  • Rashkov GD, Dobrikova AG, Pouneva ID, Misra AN, Apostolova E (2012) Sensitivity of Chlorella vulgaris to herbicides. Possibility of using it as a biological receptor in biosensors. Sensors Actuators B 161:151–155

    Article  CAS  Google Scholar 

  • Redillas MCFR, Jeong JS, Strasser RJ, Kim YS, Kim JK (2011) JIP analysis on rice (Oryza sativa cv Nipponbare) grown under limited nitrogen conditions. J Korean Soc Appl Biol Chem 54:827–832

    Article  CAS  Google Scholar 

  • Schansker G, Toth SZ, Strasser RJ (2005) Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochim Biophys Acta 1706:250–261

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a Fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 279–319

    Chapter  Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth Res 10:51–62

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence photosynthesis. Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  • Schreiber U, Klughammer C, Kolbowski J (2012) Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth Res 113:127–144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweiger J, Lang M, Lichtenthaler HK (1996) Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J Plant Physiol 148:536–547

    Article  CAS  Google Scholar 

  • Sharkey TD, Schrader SM (2006) High temperature stress. Physiology and molecular biology of stress tolerance in plants. Springer, Berlin, pp 101–129

    Book  Google Scholar 

  • Singh-Tomar R, Mathur S, Allakhverdiev SI, Jajoo A (2012) Changes in PSII heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum). J Bioenerg Biomembr 44:411–419

    Article  PubMed  CAS  Google Scholar 

  • Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270:31–45

    Article  CAS  Google Scholar 

  • Srivastava A, Strasser RJ (1995) How do land plants respond to stress temperature and stress light? Arch Sci Geneve 48:135–146

    CAS  Google Scholar 

  • Srivastava A, Greppin H, Strasser RJ (1995) Acclimation of land plants to diurnal changes in temperature and light. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol 4. Kluwer Academic Publishers, Dordrecht, pp 909–912

    Google Scholar 

  • Srivastava A, Guisse B, Greppin H, Strasser RJ (1997) Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient OKJIP. Biochim Biophys Acta 1320:95–106

    Article  CAS  Google Scholar 

  • Stefanov D, Petkova V, Denev ID (2011) Screening for heat tolerance in common bean (Phaseolus vulgaris L.) lines and cultivars using. JIP-test Sci Hortic 128:1–6

    Article  Google Scholar 

  • Stirbet A, Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient. J Photochem Photobiol B Biol 104:236. https://doi.org/10.1016/j.jphotobiol.2010.12.010

    Article  CAS  Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155

    Article  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis, London, pp 443–480

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 321–362

    Chapter  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A, Srivastava A (2005) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Advances in photosynthesis and respiration chlorophyll a Fluorescence: a signature of photosynthesis. Kluwer Academic Publisher, Dordrecht, pp 321–362

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivorecording of prompt and delayed fluorescence and 820-nm reflection changesduring drying and after rehydration of the resurrection plant Haberlea rhodopen-sis. Biochim Biophys Acta 1797:1313–1326

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Ohmori Y, Ratel E (2011) High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings. Plant Cell Physiol 52:1697–1707

    Article  PubMed  CAS  Google Scholar 

  • Trissl HW, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys J 64:974–988

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsimilli-Michael M, Strasser RJ (2008) In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Dordrecht, pp 679–703

    Chapter  Google Scholar 

  • Tsimilli-Michael M, Pecheux M, Strasser RJ (1998) Vitality and stress adaptation of the symbionts of coral reef and temperate foraminifers probed in hospite by the fluorescence kinetics OJIP. Archs Sci Geneve 51:205–240

    Google Scholar 

  • Van Heerden PD, Strasser RJ, Krüger GH (2004) Reduction of dark chilling stress in N2-fixing soybean by nitrate as indicated by chlorophyll a fluorescence kinetics. Physiol Plant 121:239–249

    Article  PubMed  Google Scholar 

  • Van Heerden PDR, Swanepoel JW, Krüger GHJ (2007) Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environ Exp Bot 61:124–136

    Article  CAS  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Vladkova R, Ivanova PI, Krastera V, Misra AN, Apostolova E (2009) Assessment of chlorophyll florescent and photosynthetic oxygen evolution parameters in pea thylakoid membranes for use in biosensors against QB binding herbicide- atrazine. C R Acad Bulg Sci 62:355–360

    CAS  Google Scholar 

  • Vladkova R, Dobrikova AG, Singh R, Misra AN, Apostolova E (2011) Photoelectron transport ability of chloroplast thylakoid membranes treated with NO donor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. Nitric Oxide Biol Chem 24:84–90

    Article  CAS  Google Scholar 

  • Walters RG, Horton P (1991) Resolution of non-photochemical chlorophyll fluorescence quenching in barley leaves. Photosynth Res 27:121–133

    Article  PubMed  CAS  Google Scholar 

  • Wobeser EAV, Figueroa FL, Cabello-Pasini A (2000) Effect of UV radiation on photoinhibition of marine macrophytes in culture systems. J Appl Phycol 12:159–168

    Article  Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57–64

    Article  CAS  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Sharkey TD (2009) Photosynthetic electron transport and proton flux under moderate heat stress. Photosynth Res 100:29–43

    Article  PubMed  CAS  Google Scholar 

  • Zivcak M, Brestic M, Olsovska K, Slamka P (2008) Performance index as a sensitive indicator of water stress in Triticum aestivum. Plant Soil Environ 54:133–139

    Article  Google Scholar 

  • Zivcak M, Kalaji MH, Shao HB, Olsovska K, Brestic M (2014a) Photosynthetic proton and electron transport in wheat leaves under prolonged moderate drought stress. J Photochem Photobiol B Biol 137:107–115. https://doi.org/10.1016/j.jphotobiol.2014.01.007

  • Zivcak M, Olsovska K, Slamka P, Galambosova J, Rataj V, Shao HB, Brestic M (2014b) Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency. Plant Soil Environ 60:210–215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.N. (2018). Chlorophyll Fluorescence: A Practical Approach to Study Ecophysiology of Green Plants. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_5

Download citation

Publish with us

Policies and ethics