Skip to main content

Advertisement

Log in

Conversion of extracellular ATP into adenosine: a master switch in renal health and disease

  • Review Article
  • Published:

From Nature Reviews Nephrology

View current issue Sign up to alerts

Abstract

ATP and its ultimate degradation product adenosine are potent extracellular signalling molecules that elicit a variety of pathophysiological functions in the kidney through the activation of P2 and P1 purinergic receptors, respectively. Extracellular purines can modulate immune responses, balancing inflammatory processes and immunosuppression; indeed, alterations in extracellular nucleotide and adenosine signalling determine outcomes of inflammation and healing processes. The functional activities of ectonucleotidases such as CD39 and CD73, which hydrolyse pro-inflammatory ATP to generate immunosuppressive adenosine, are therefore pivotal in acute inflammation. Protracted inflammation may result in aberrant adenosinergic signalling, which serves to sustain inflammasome activation and worsen fibrotic reactions. Alterations in the expression of ectonucleotidases on various immune cells, such as regulatory T cells and macrophages, as well as components of the renal vasculature, control purinergic receptor-mediated effects on target tissues within the kidney. The role of CD39 as a rheostat that can have an impact on purinergic signalling in both acute and chronic inflammation is increasingly supported by the literature, as detailed in this Review. Better understanding of these purinergic processes and development of novel drugs targeting these pathways could lead to effective therapies for the management of acute and chronic kidney disease.

Key points

  • Extracellular ATP and/or ADP acting through P2 receptors exert profound effects on the immune system and also have an impact on kidney pathophysiology.

  • Extracellular adenosine is a signalling molecule in the kidney and in the immune system that acts through P1 or adenosine receptors, often opposing the effects of P2 receptor signalling.

  • The balance between extracellular ATP and adenosine concentrations is largely regulated by the activity of the CD39–CD73 axis and other ATP hydrolysing enzymes, such as the nucleotide pyrophosphatase/phosphodiesterase proteins.

  • CD39 and CD73, an ecto-5′-nucleotidase, constitute a key ‘extracellular master switch’ in the kidney in both health and disease.

  • CD39 plays a role in renal inflammation, immunomodulation, acute kidney injury, chronic kidney disease, diabetic nephropathy, polycystic kidney disease, transplantation and renal cell carcinoma.

  • Therapeutic options for kidney disease could include using currently available drugs or developing agents to target purinergic processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: ATP–adenosine metabolic pathways within the kidney.
Fig. 2: CD39, ATP and adenosine in the activation of the NLRP3 inflammasome.
Fig. 3: CD39 and regulatory cell purinergic signalling modulates tissue injury and repair.
Fig. 4: Proposed effects of CD39 and adenosine in acute ischaemic kidney disease.
Fig. 5: CD4+CD25+/−CD39+ expression in the peripheral blood of patients with renal allograft rejection in transplantation rejection and states of tolerance.

Similar content being viewed by others

References

  1. Burnstock, G. Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. Bioessays 34, 218–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Lohman, A. W., Billaud, M. & Isakson, B. E. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc. Res. 95, 269–280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bailey, M. A., Hillman, K. A. & Unwin, R. J. P2 receptors in the kidney. J. Auton. Nerv. Syst. 81, 264–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Menzies, R. I., Unwin, R. J. & Bailey, M. A. Renal P2 receptors and hypertension. Acta Physiol. 213, 232–241 (2015).

    Article  CAS  Google Scholar 

  6. Burnstock, G. Purine and pyrimidine receptors. Cell Mol. Life Sci. 64, 1471–1483 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Di Virgilio, F., Dal Ben, D., Sarti, A. C., Giuliani, A. L. & Falzoni, S. The P2X7 receptor in infection and inflammation. Immunity 47, 15–31 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. Kukulski, F., Levesque, S. A. & Sevigny, J. Impact of ectoenzymes on p2 and p1 receptor signaling. Adv. Pharmacol. 61, 263–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Blackburn, M. R., Vance, C. O., Morschl, E. & Wilson, C. N. Adenosine receptors and inflammation. Handb. Exp. Pharmacol., 215-269 (2009).

  10. Fredholm, B. B., AP, I. J., Jacobson, K. A., Klotz, K. N. & Linden, J. International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 53, 527–552 (2001).

    CAS  PubMed  Google Scholar 

  11. Holien, J. K. et al. AMP and adenosine are both ligands for adenosine 2B receptor signaling. Bioorg Med. Chem. Lett. 28, 202–206 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Rajakumar, S et al. CD73-deficiency protects in kidney ischemia reperfusion injury (IRI) — the role of adenosine A1, A2A and A2B receptors. Nephrology 16, 49 (2011).

  13. Lee, H. T. & Emala, C. W. Adenosine attenuates oxidant injury in human proximal tubular cells via A(1) and A(2a) adenosine receptors. Am. J. Physiol. Ren. Physiol 282, F844–F852 (2002).

    Article  CAS  Google Scholar 

  14. Zhang, W. et al. Elevated ecto-5’-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ. Res. 112, 1466–1478 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Vallon, V., Muhlbauer, B. & Osswald, H. Adenosine and kidney function. Physiol. Rev. 86, 901–940 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Fuxe, K., Guidolin, D., Agnati, L. F. & Borroto-Escuela, D. O. Dopamine heteroreceptor complexes as therapeutic targets in Parkinson’s disease. Expert Opin. Ther. Targets 19, 377–398 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Moriyama, K. & Sitkovsky, M. V. Adenosine A2A receptor is involved in cell surface expression of A2B receptor. J. Biol. Chem. 285, 39271–39288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roberts, V. et al. The differential effect of apyrase treatment and hCD39 overexpression on chronic renal fibrosis after ischemia-reperfusion injury. Transplantation 101, e194–e204 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Roberts, V., Lu, B., Dwyer, K. M. & Cowan, P. J. Adenosine receptor expression in the development of renal fibrosis following ischemic injury. Transpl. Proc. 46, 3257–3261 (2014).

    Article  CAS  Google Scholar 

  20. Markovic, D. & Challiss, R. A. Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol. Life Sci. 66, 3337–3352 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Kreth, S., Ledderose, C., Kaufmann, I., Groeger, G. & Thiel, M. Differential expression of 5’-UTR splice variants of the adenosine A2A receptor gene in human granulocytes: identification, characterization, and functional impact on activation. FASEB J. 22, 3276–3286 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Nemeth, Z. H. et al. Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. J. Immunol. 176, 5616–5626 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Venereau, E., Ceriotti, C. & Bianchi, M. E. DAMPs from cell death to new life. Front. Immunol. 6, 422 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Robson, S. C., Sevigny, J. & Zimmermann, H. The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal. 2, 409–430 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kishore, B. K. et al. Expression of NTPDase1 and NTPDase2 in murine kidney: relevance to regulation of P2 receptor signaling. Am. J. Physiol. Ren. Physiol 288, F1032–F1043 (2005).

    Article  CAS  Google Scholar 

  26. Vekaria, R. M., Shirley, D. G., Sevigny, J. & Unwin, R. J. Immunolocalization of ectonucleotidases along the rat nephron. Am. J. Physiol. Ren. Physiol 290, F550–F560 (2006).

    Article  CAS  Google Scholar 

  27. Le Hir, M. & Kaissling, B. Distribution and regulation of renal ecto-5’-nucleotidase: implications for physiological functions of adenosine. Am. J. Physiol. 264, F377–F387 (1993).

    PubMed  Google Scholar 

  28. Karczewska, J., Martyniec, L., Dzierzko, G., Stepinski, J. & Angielski, S. The relationship between constitutive ATP release and its extracellular metabolism in isolated rat kidney glomeruli. J. Physiol. Pharmacol. 58, 321–333 (2007).

    CAS  PubMed  Google Scholar 

  29. Lazarowski, E. R., Boucher, R. C. & Harden, T. K. Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J. Biol. Chem. 275, 31061–31068 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Goldfine, I. D. et al. The role of membrane glycoprotein plasma cell antigen 1/ectonucleotide pyrophosphatase phosphodiesterase 1 in the pathogenesis of insulin resistance and related abnormalities. Endocr. Rev. 29, 62–75 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Longhi, M. S., Robson, S. C., Bernstein, S. H., Serra, S. & Deaglio, S. Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J. Mol. Med. 91, 165–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Ralto, K. M., Rhee, E. P. & Parikh, S. M. NAD+ homeostasis in renal health and disease. Nat. Rev. Nephrol. 16, 99–111 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Sortica, D. A., Crispim, D., Zaffari, G. P., Friedman, R. & Canani, L. H. The role of ecto-nucleotide pyrophosphatase/phosphodiesterase 1 in diabetic nephropathy. Arq. Bras. Endocrinol. Metab. 55, 677–685 (2011).

    Article  Google Scholar 

  34. Sortica, D. A. et al. K121Q polymorphism in the ectonucleotide pyrophosphatase/phosphodiesterase 1 gene is associated with acute kidney rejection. PLoS One 14, e0219062 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lomashvili, K. A., Cobbs, S., Hennigar, R. A., Hardcastle, K. I. & O’Neill, W. C. Phosphate-induced vascular calcification: role of pyrophosphate and osteopontin. J. Am. Soc. Nephrol. 15, 1392–1401 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Schlieper, G., Schurgers, L., Brandenburg, V., Reutelingsperger, C. & Floege, J. Vascular calcification in chronic kidney disease: an update. Nephrol. Dial. Transpl. 31, 31–39 (2016).

    Article  CAS  Google Scholar 

  37. Fish, R. S. et al. ATP and arterial calcification. Eur. J. Clin. Invest. 43, 405–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Moochhala, S. H., Sayer, J. A., Carr, G. & Simmons, N. L. Renal calcium stones: insights from the control of bone mineralization. Exp. Physiol. 93, 43–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Lomashvili, K. A., Garg, P., Narisawa, S., Millan, J. L. & O’Neill, W. C. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int. 73, 1024–1030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Villa-Bellosta, R., Gonzalez-Parra, E. & Egido, J. Alkalosis and dialytic clearance of phosphate increases phosphatase activity: a hidden consequence of hemodialysis. PLoS One 11, e0159858 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lomashvili, K. A., Khawandi, W. & O’Neill, W. C. Reduced plasma pyrophosphate levels in hemodialysis patients. J. Am. Soc. Nephrol. 16, 2495–2500 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Shirley, D. G., Vekaria, R. M. & Sevigny, J. Ectonucleotidases in the kidney. Purinergic Signal. 5, 501–511 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peters, E., Heemskerk, S., Masereeuw, R. & Pickkers, P. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am. J. Kidney Dis. 63, 1038–1048 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Lam, K. W. et al. Improved immunohistochemical detection of prostatic acid phosphatase by a monoclonal antibody. Prostate 15, 13–21 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Boison, D. & Yegutkin, G. G. Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell 36, 582–596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vallon, V., Unwin, R., Inscho, E. W., Leipziger, J. & Kishore, B. K. Extracellular nucleotides and P2 receptors in renal function. Physiol. Rev. 100, 211–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Schnermann, J. & Levine, D. Z. Paracrine factors in tubuloglomerular feedback: adenosine, ATP, and nitric oxide. Annu. Rev. Physiol. 65, 501–529 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Castrop, H. Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine. Acta Physiol. 189, 3–14 (2007).

    Article  CAS  Google Scholar 

  49. Kishore, B. K., Nelson, R. D., Miller, R. L., Carlson, N. G. & Kohan, D. E. P2Y2 receptors and water transport in the kidney. Purinergic Signal. 5, 491–499 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y. et al. Genetic deletion of P2Y2 receptor offers long-term (5 months) protection against lithium-induced polyuria, natriuresis, kaliuresis, and collecting duct remodeling and cell proliferation. Front. Physiol. 9, 1765 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kishore, B. K. et al. Targeting renal purinergic signalling for the treatment of lithium-induced nephrogenic diabetes insipidus. Acta Physiol. 214, 176–188 (2015).

    Article  CAS  Google Scholar 

  52. Zhang, Y., Pop, I. L., Carlson, N. G. & Kishore, B. K. Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling. Am. J. Physiol. Ren. Physiol. 302, F70–F77 (2012).

    Article  CAS  Google Scholar 

  53. Zhang, Y. et al. P2Y12 receptor localizes in the renal collecting duct and its blockade augments arginine vasopressin action and alleviates nephrogenic diabetes insipidus. J. Am. Soc. Nephrol. 26, 2978–2987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice. Purinergic Signal. 13, 239–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Y. et al. Genetic deletion of ADP-activated P2Y12 receptor ameliorates lithium-induced nephrogenic diabetes insipidus in mice. Acta Physiol. 225, e13191 (2019).

    Article  CAS  Google Scholar 

  56. Dwyer, K. M. et al. Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J. Clin. Invest. 113, 1440–1446 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, Y. et al. Defective renal water handling in transgenic mice over-expressing human CD39/NTPDase1. Am. J. Physiol. Ren. Physiol. 303, F420–F430 (2012).

    Article  CAS  Google Scholar 

  58. Zhang, Y. et al. Impaired natriuretic response to high-NaCl diet plus aldosterone infusion in mice overexpressing human CD39, an ectonucleotidase (NTPDase1). Am. J. Physiol. Ren. Physiol. 308, F1398–F1408 (2015).

    Article  CAS  Google Scholar 

  59. Leipziger, J. Luminal nucleotides are tonic inhibitors of renal tubular transport. Curr. Opin. Nephrol. Hypertens. 20, 518–522 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Leipziger, J. Control of epithelial transport via luminal P2 receptors. Am. J. Physiol. Ren. Physiol. 284, F419–F432 (2003).

    Article  CAS  Google Scholar 

  61. Praetorius, H. A. & Leipziger, J. Primary cilium-dependent sensing of urinary flow and paracrine purinergic signaling. Semin. Cell Dev. Biol. 24, 3–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Pandit, M. M. et al. Flow regulation of endothelin-1 production in the inner medullary collecting duct. Am. J. Physiol. Ren. Physiol. 308, F541–F552 (2015).

    Article  CAS  Google Scholar 

  63. Burnstock, G., Evans, L. C. & Bailey, M. A. Purinergic signalling in the kidney in health and disease. Purinergic Signal. 10, 71–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Solini, A., Usuelli, V. & Fiorina, P. The dark side of extracellular ATP in kidney diseases. J. Am. Soc. Nephrol. 26, 1007–1016 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Menzies, R. I., Tam, F. W., Unwin, R. J. & Bailey, M. A. Purinergic signaling in kidney disease. Kidney Int. 91, 315–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Hutton, H. L., Ooi, J. D., Holdsworth, S. R. & Kitching, A. R. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 21, 736–744 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Baron, L. et al. The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 6, e1629 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dosch, M. et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. eLife 8, e42670 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sakaki, H., Tsukimoto, M., Harada, H., Moriyama, Y. & Kojima, S. Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8, e59778 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riteau, N. et al. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis. 3, e403 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brandao-Burch, A., Key, M. L., Patel, J. J., Arnett, T. R. & Orriss, I. R. The P2X7 receptor is an important regulator of extracellular ATP levels. Front. Endocrinol. 3, 41 (2012).

    Article  Google Scholar 

  73. Fan, J., Xie, K., Wang, L., Zheng, N. & Yu, X. Roles of inflammasomes in inflammatory kidney diseases. Mediators Inflamm. 2019, 2923072 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. Kim, Y. G., Kim, S. M., Kim, K. P., Lee, S. H. & Moon, J. Y. The role of inflammasome-dependent and inflammasome-independent NLRP3 in the kidney. Cells 8, 1389 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  75. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ayna, G. et al. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS One 7, e40069 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Petrovski, G. et al. Phagocytosis of cells dying through autophagy induces inflammasome activation and IL-1beta release in human macrophages. Autophagy 7, 321–330 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Yadav, V. et al. Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1beta-driven venous thrombosis. J. Clin. Invest. 129, 2872–2877 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ouyang, X. et al. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1alpha pathway. Nat. Commun. 4, 2909 (2013).

    Article  PubMed  CAS  Google Scholar 

  80. Kurts, C., Panzer, U., Anders, H. J. & Rees, A. J. The immune system and kidney disease: basic concepts and clinical implications. Nat. Rev. Immunol. 13, 738–753 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Tecklenborg, J., Clayton, D., Siebert, S. & Coley, S. M. The role of the immune system in kidney disease. Clin. Exp. Immunol. 192, 142–150 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maliszewski, C. R. et al. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J. Immunol. 153, 3574–3583 (1994).

    CAS  PubMed  Google Scholar 

  83. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dwyer, K. M. et al. Expression of CD39 by human peripheral blood CD4+ CD25+ T cells denotes a regulatory memory phenotype. Am. J. Transpl. 10, 2410–2420 (2010).

    Article  CAS  Google Scholar 

  85. Allard, B., Longhi, M. S., Robson, S. C. & Stagg, J. The ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targets. Immunol. Rev. 276, 121–144 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mizumoto, N. et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat. Med. 8, 358–365 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Yoon, J. et al. Plasma cell alloantigen ENPP1 is expressed by a subset of human B cells with potential regulatory functions. Immunol. Cell Biol. 94, 719–728 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Pan, W. et al. Metabolic consequences of ENPP1 overexpression in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 301, E901–E911 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nowak-Machen, M. et al. Lysophosphatidic acid generation by pulmonary NKT cell ENPP-2/autotaxin exacerbates hyperoxic lung injury. Purinergic Signal. 11, 455–461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Barbayianni, E., Kaffe, E., Aidinis, V. & Kokotos, G. Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer. Prog. Lipid Res. 58, 76–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Pettengill, M. et al. Soluble ecto-5’-nucleotidase (5’-NT), alkaline phosphatase, and adenosine deaminase (ADA1) activities in neonatal blood favor elevated extracellular adenosine. J. Biol. Chem. 288, 27315–27326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gibson, D. J. et al. Heightened expression of CD39 by regulatory T lymphocytes is associated with therapeutic remission in inflammatory bowel disease. Inflamm. Bowel Dis. 21, 2806–2814 (2015).

    Article  PubMed  Google Scholar 

  93. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Liao, H., Hyman, M. C., Baek, A. E., Fukase, K. & Pinsky, D. J. cAMP/CREB-mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J. Biol. Chem. 285, 14791–14805 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Aswad, F., Kawamura, H. & Dennert, G. High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP: a role for P2X7 receptors. J. Immunol. 175, 3075–3083 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-alpha. Nat. Med. 21, 638–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Roncarolo, M. G., Gregori, S., Bacchetta, R. & Battaglia, M. Tr1 cells and the counter-regulation of immunity: natural mechanisms and therapeutic applications. Curr. Top. Microbiol. Immunol. 380, 39–68 (2014).

    CAS  PubMed  Google Scholar 

  98. Dwyer, K. M. et al. CD39 and control of cellular immune responses. Purinergic Signal. 3, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Schenk, U. et al. ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci. Signal. 4, ra12 (2011).

    Article  PubMed  Google Scholar 

  100. Longhi, M. S. et al. Characterization of human CD39+ Th17 cells with suppressor activity and modulation in inflammatory bowel disease. PLoS One 9, e87956 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Longhi, M. S., Moss, A., Jiang, Z. G. & Robson, S. C. Purinergic signaling during intestinal inflammation. J. Mol. Med. 95, 915–925 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Anders, H. J. & Ryu, M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80, 915–925 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Cao, Q., Wang, Y. & Harris, D. C. Pathogenic and protective role of macrophages in kidney disease. Am. J. Physiol. Ren. Physiol 305, F3–F11 (2013).

    Article  CAS  Google Scholar 

  105. Tian, S. & Chen, S. Y. Macrophage polarization in kidney diseases. Macrophage 2, e679 (2015).

    PubMed  PubMed Central  Google Scholar 

  106. Lopez-Castejon, G., Baroja-Mazo, A. & Pelegrin, P. Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cell Mol. Life Sci. 68, 3095–3107 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Pelegrin, P. & Surprenant, A. Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J. 28, 2114–2127 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122, 787–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Levesque, S. A., Kukulski, F., Enjyoji, K., Robson, S. C. & Sevigny, J. NTPDase1 governs P2X7-dependent functions in murine macrophages. Eur. J. Immunol. 40, 1473–1485 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ferrante, C. J. et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 36, 921–931 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Roberts, V. S., Cowan, P. J., Alexander, S. I., Robson, S. C. & Dwyer, K. M. The role of adenosine receptors A2A and A2B signaling in renal fibrosis. Kidney Int. 86, 685–692 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Kanthi, Y. M., Sutton, N. R. & Pinsky, D. J. CD39: interface between vascular thrombosis and inflammation. Curr. Atheroscler. Rep. 16, 425 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kanthi, Y. et al. Flow-dependent expression of ectonucleotide tri(di)phosphohydrolase-1 and suppression of atherosclerosis. J. Clin. Invest. 125, 3027–3036 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Jiang, Z. G. et al. Characterization of circulating microparticle-associated CD39 family ecto-nucleotidases in human plasma. Purinergic Signal. 10, 611–618 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yegutkin, G. G., Wieringa, B., Robson, S. C. & Jalkanen, S. Metabolism of circulating ADP in the bloodstream is mediated via integrated actions of soluble adenylate kinase-1 and NTPDase1/CD39 activities. FASEB J. 26, 3875–3883 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thompson, L. F. et al. Crucial role for ecto-5’-nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med. 200, 1395–1405 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Eckle, T. et al. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111, 2024–2035 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hechler, B. & Gachet, C. Purinergic receptors in thrombosis and inflammation. Arterioscler. Thromb. Vasc. Biol. 35, 2307–2315 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Gremmel, T. et al. Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis. Arterioscler. Thromb. Vasc. Biol. 36, 501–509 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Baroni, M. et al. Stimulation of P2 (P2X7) receptors in human dendritic cells induces the release of tissue factor-bearing microparticles. FASEB J. 21, 1926–1933 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Johnston-Cox, H. A., Koupenova, M. & Ravid, K. A2 adenosine receptors and vascular pathologies. Arterioscler. Thromb. Vasc. Biol. 32, 870–878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kishore, B. K., Robson, S. C. & Dwyer, K. M. CD39-adenosinergic axis in renal pathophysiology and therapeutics. Purinergic Signal. 14, 109–120 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Roberts, V., Lu, B., Rajakumar, S., Cowan, P. J. & Dwyer, K. M. The CD39-adenosinergic axis in the pathogenesis of renal ischemia-reperfusion injury. Purinergic Signal. 9, 135–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Grenz, A. et al. Contribution of E-NTPDase1 (CD39) to renal protection from ischemia-reperfusion injury. FASEB J. 21, 2863–2873 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Lu, B. et al. The impact of purinergic signaling on renal ischemia-reperfusion injury. Transplantation 86, 1707–1712 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Crikis, S. et al. Transgenic overexpression of CD39 protects against renal ischemia-reperfusion and transplant vascular injury. Am. J. Transpl. 10, 2586–2595 (2010).

    Article  CAS  Google Scholar 

  129. Eltzschig, H. K. et al. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood 113, 224–232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grenz, A. et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med. 5, e137 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Grenz, A. et al. Protective role of ecto-5’-nucleotidase (CD73) in renal ischemia. J. Am. Soc. Nephrol. 18, 833–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Jian, R. et al. CD73 protects kidney from ischemia-reperfusion injury through reduction of free radicals. APMIS 120, 130–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Sharma, R. & Kinsey, G. R. Regulatory T cells in acute and chronic kidney diseases. Am. J. Physiol. Ren. Physiol 314, F679–F698 (2018).

    Article  CAS  Google Scholar 

  134. Hu, M. et al. Regulatory T cells in kidney disease and transplantation. Kidney Int. 90, 502–514 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Kinsey, G. R. et al. Regulatory T cells suppress innate immunity in kidney ischemia-reperfusion injury. J. Am. Soc. Nephrol. 20, 1744–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kinsey, G. R., Huang, L., Vergis, A. L., Li, L. & Okusa, M. D. Regulatory T cells contribute to the protective effect of ischemic preconditioning in the kidney. Kidney Int. 77, 771–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Grenz, A. et al. Use of a hanging-weight system for isolated renal artery occlusion during ischemic preconditioning in mice. Am. J. Physiol. Ren. Physiol 292, F475–F485 (2007).

    Article  CAS  Google Scholar 

  138. Kinsey, G. R. et al. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection. J. Am. Soc. Nephrol. 23, 1528–1537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Rissiek, A. et al. The expression of CD39 on regulatory T cells is genetically driven and further upregulated at sites of inflammation. J. Autoimmun. 58, 12–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    Article  PubMed  CAS  Google Scholar 

  141. Hill, N. R. et al. Global prevalence of chronic kidney disease — a systematic review and meta-analysis. PLoS One 11, e0158765 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Ren. Physiol 298, F1078–F1094 (2010).

    Article  CAS  Google Scholar 

  143. Dai, Y. et al. A2B adenosine receptor-mediated induction of IL-6 promotes CKD. J. Am. Soc. Nephrol. 22, 890–901 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wilkinson, P. F., Farrell, F. X., Morel, D., Law, W. & Murphy, S. Adenosine signaling increases proinflammatory and profibrotic mediators through activation of a functional adenosine 2B receptor in renal fibroblasts. Ann. Clin. Lab. Sci. 46, 339–345 (2016).

    CAS  PubMed  Google Scholar 

  145. Basile, D. P., Donohoe, D. L., Roethe, K. & Mattson, D. L. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am. J. Physiol. Ren. Physiol 284, F338–F348 (2003).

    Article  CAS  Google Scholar 

  146. Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Fine, L. G. & Norman, J. T. Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int. 74, 867–872 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, L. et al. Adenosine 2A receptor is protective against renal injury in MRL/lpr mice. Lupus 20, 667–677 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Ozuyaman, B. et al. Adenosine produced via the CD73/ecto-5’-nucleotidase pathway has no impact on erythropoietin production but is associated with reduced kidney weight. Pflugers Arch. 452, 324–331 (2006).

    Article  PubMed  CAS  Google Scholar 

  150. Blume, C. et al. Autoimmunity in CD73/Ecto-5’-nucleotidase deficient mice induces renal injury. PLoS One 7, e37100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Picher, M., Burch, L. H., Hirsh, A. J., Spychala, J. & Boucher, R. C. Ecto 5’-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J. Biol. Chem. 278, 13468–13479 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Yoshida, O. et al. CD39 deficiency in murine liver allografts promotes inflammatory injury and immune-mediated rejection. Transpl. Immunol. 32, 76–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Roberts, V., Lu, B., Chia, J., Cowan, P. J. & Dwyer, K. M. CD39 overexpression does not attenuate renal fibrosis in the unilateral ureteric obstructive model of chronic kidney disease. Purinergic Signal. 12, 653–660 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Xiao, H. et al. The effects of adenosine A2A receptor knockout on renal interstitial fibrosis in a mouse model of unilateral ureteral obstruction. Acta Histochem. 115, 315–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Xiao, H. et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS One 8, e60173 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Goncalves, R. G. et al. The role of purinergic P2X7 receptors in the inflammation and fibrosis of unilateral ureteral obstruction in mice. Kidney Int. 70, 1599–1606 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Kim, M. J. et al. Exaggerated renal fibrosis in P2X4 receptor-deficient mice following unilateral ureteric obstruction. Nephrol. Dial. Transpl. 29, 1350–1361 (2014).

    Article  CAS  Google Scholar 

  158. Kawano, A. et al. Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochem. Biophys. Res. Commun. 420, 102–107 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Rennert, L. et al. P2Y2R signaling is involved in the onset of glomerulonephritis. Front. Immunol. 9, 1589 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Zhao, J. et al. P2X7 blockade attenuates murine lupus nephritis by inhibiting activation of the NLRP3/ASC/caspase 1 pathway. Arthritis Rheum. 65, 3176–3185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Garcia, G. E. et al. Adenosine A2A receptor activation and macrophage-mediated experimental glomerulonephritis. FASEB J. 22, 445–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Scheuher, C. A review of organ transplantation: heart, lung, kidney, liver, and simultaneous liver-kidney. Crit. Care Nurs. Q. 39, 199–206 (2016).

    Article  PubMed  Google Scholar 

  163. Nankivell, B. J. & Kuypers, D. R. Diagnosis and prevention of chronic kidney allograft loss. Lancet 378, 1428–1437 (2011).

    Article  PubMed  Google Scholar 

  164. McRae, J. L., JSJ, C., S, P. & KM, D. Evaluation of CD4+CD25+/−CD39+ T cell populations in peripheral blood of patients following renal transplantation and during acute allograft rejection. Nephrology 22, 505–512 (2016).

    Article  CAS  Google Scholar 

  165. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Braza, F. et al. Central role of CD45RA Foxp3hi memory regulatory T cells in clinical kidney transplantation tolerance. J. Am. Soc. Nephrol. 26, 1795–1805 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Durand, M. et al. Increased degradation of ATP is driven by memory regulatory T cells in kidney transplantation tolerance. Kidney Int. 93, 1154–1164 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Mahajan, D. et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J. Am. Soc. Nephrol. 17, 2731–2741 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Wang, Y. M. et al. Regulatory T cells participate in CD39-mediated protection from renal injury. Eur. J. Immunol. 42, 2441–2451 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Sitkovsky, M. V. et al. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists. Cancer Immunol. Res. 2, 598–605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Fong, L. et al. Adenosine 2A receptor blockade as an immunotherapy for treatment-refractory renal cell cancer. Cancer Discov. 10, 40–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Finke, J. H. et al. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J. 19, 353–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Siddiqui, S. A. et al. Tumor-infiltrating Foxp3CD4+CD25+ T cells predict poor survival in renal cell carcinoma. Clin. Cancer Res. 13, 2075–2081 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Stagg, J. et al. CD73-deficient mice are resistant to carcinogenesis. Cancer Res. 72, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Stagg, J. et al. Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc. Natl Acad. Sci. USA 107, 1547–1552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li, X. Y. et al. Targeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunity. Cancer Discov. 9, 1754–1773 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Perrot, I. et al. Blocking antibodies targeting the CD39/CD73 immunosuppressive pathway unleash immune responses in combination cancer therapies. Cell Rep. 27, 2411–2425.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Lau, W. M. et al. Enpp1: a potential facilitator of breast cancer bone metastasis. PLoS One 8, e66752 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Takahashi, R. U. et al. Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nat. Commun. 6, 7318 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Hu, M. et al. Dysregulated ENPP1 increases the malignancy of human lung cancer by inducing epithelial-mesenchymal transition phenotypes and stem cell features. Am. J. Cancer Res. 9, 134–144 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Su, S. C. et al. Autotaxin-lysophosphatidic acid signaling axis mediates tumorigenesis and development of acquired resistance to sunitinib in renal cell carcinoma. Clin. Cancer Res. 19, 6461–6472 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Narres, M. et al. The incidence of end-stage renal disease in the diabetic (compared to the non-diabetic) population: a systematic review. PLoS One 11, e0147329 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Tomino, Y. & Gohda, T. The prevalence and management of diabetic nephropathy in Asia. Kidney Dis. 1, 52–60 (2015).

    Article  Google Scholar 

  185. Teng, J. et al. Spectrum of renal disease in diabetes. Nephrology 19, 528–536 (2014).

    Article  PubMed  Google Scholar 

  186. Persson, P., Hansell, P. & Palm, F. Reduced adenosine A2a receptor-mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration. Kidney Int. 87, 109–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  187. Moritz, C. E. et al. Physical training normalizes nucleotide hydrolysis and biochemical parameters in blood serum from streptozotocin-diabetic rats. Arch. Physiol. Biochem. 118, 253–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Rucker, B. et al. E-NTPDases and ecto-5’-nucleotidase expression profile in rat heart left ventricle and the extracellular nucleotide hydrolysis by their nerve terminal endings. Life Sci. 82, 477–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Xia, J. F. et al. Correlations of six related purine metabolites and diabetic nephropathy in Chinese type 2 diabetic patients. Clin. Biochem. 42, 215–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Tam, F. W. Monocyte chemoattractant protein-1 (MCP-1) is a prognostic biomarker and a therapeutic target in diabetic nephropathy. Meta Gene 17, S12–S13 (2018).

    Article  Google Scholar 

  191. Friedman, D. J., Rennke, H. G., Csizmadia, E., Enjyoji, K. & Robson, S. C. The vascular ectonucleotidase ENTPD1 is a novel renoprotective factor in diabetic nephropathy. Diabetes 56, 2371–2379 (2007).

    Article  CAS  PubMed  Google Scholar 

  192. Menzies, R. I. et al. Hyperglycemia-induced renal P2X7 receptor activation enhances diabetes-related injury. EBioMedicine 19, 73–83 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Friedman, D. J. et al. Functional ENTPD1 polymorphisms in African Americans with diabetes and end-stage renal disease. Diabetes 58, 999–1006 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Sommerer, C. & Zeier, M. Clinical manifestation and management of ADPKD in western countries. Kidney Dis. 2, 120–127 (2016).

    Article  Google Scholar 

  195. Wilson, P. D., Hovater, J. S., Casey, C. C., Fortenberry, J. A. & Schwiebert, E. M. ATP release mechanisms in primary cultures of epithelia derived from the cysts of polycystic kidneys. J. Am. Soc. Nephrol. 10, 218–229 (1999).

    CAS  PubMed  Google Scholar 

  196. Turner, C. M., Ramesh, B., Srai, S. K., Burnstock, G. & Unwin, R. J. Altered ATP-sensitive P2 receptor subtype expression in the Han:SPRD cy/+ rat, a model of autosomal dominant polycystic kidney disease. Cell Tissues Organs 178, 168–179 (2004).

    Article  CAS  Google Scholar 

  197. Xu, C. et al. Attenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Cai2+ signaling in human ADPKD cyst epithelial cells. Am. J. Physiol. Ren. Physiol. 296, F1464–F1476 (2009).

    Article  CAS  Google Scholar 

  198. Hovater, M. B., Olteanu, D., Welty, E. A. & Schwiebert, E. M. Purinergic signaling in the lumen of a normal nephron and in remodeled PKD encapsulated cysts. Purinergic Signal. 4, 109–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chang, M. Y. et al. Inhibition of the P2X7 receptor reduces cystogenesis in PKD. J. Am. Soc. Nephrol. 22, 1696–1706 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hillman, K. A. et al. The P2X7 ATP receptor modulates renal cyst development in vitro. Biochem. Biophys. Res. Commun. 322, 434–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Palygin, O. et al. Characterization of purinergic receptor expression in ARPKD cystic epithelia. Purinergic Signal. 14, 485–497 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ilatovskaya, D. V., Palygin, O. & Staruschenko, A. Functional and therapeutic importance of purinergic signaling in polycystic kidney disease. Am. J. Physiol. Ren. Physiol 311, F1135–F1139 (2016).

    Article  CAS  Google Scholar 

  203. Ghimire, G., Hage, F. G., Heo, J. & Iskandrian, A. E. Regadenoson: a focused update. J. Nucl. Cardiol. 20, 284–288 (2013).

    Article  PubMed  Google Scholar 

  204. Ananthasubramaniam, K. et al. A randomized, double-blind, placebo-controlled study of the safety and tolerance of regadenoson in subjects with stage 3 or 4 chronic kidney disease. J. Nucl. Cardiol. 19, 319–329 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Vij, A., Golzar, Y. & Doukky, R. Regadenoson use in chronic kidney disease and end-stage renal disease: a focused review. J. Nucl. Cardiol. 25, 137–149 (2018).

    Article  PubMed  Google Scholar 

  206. Hinz, S., Lacher, S. K., Seibt, B. F. & Muller, C. E. BAY60-6583 acts as a partial agonist at adenosine A2B receptors. J. Pharmacol. Exp. Ther. 349, 427–436 (2014).

    Article  PubMed  CAS  Google Scholar 

  207. Sitkovsky, M. V. Lessons from the A2A adenosine receptor antagonist-enabled tumor regression and survival in patients with treatment-refractory renal cell cancer. Cancer Discov. 10, 16–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, Y. et al. Potential role of purinergic signaling in urinary concentration in inner medulla: insights from P2Y2 receptor gene knockout mice. Am. J. Physiol. Ren. Physiol. 295, F1715–F1724 (2008).

    Article  CAS  Google Scholar 

  209. Kishi, Y. et al. Perindopril augments ecto-ATP diphosphohydrolase activity and enhances endothelial anti-platelet function in human umbilical vein endothelial cells. J. Hypertens. 21, 1347–1353 (2003).

    Article  CAS  PubMed  Google Scholar 

  210. Kaneider, N. C. et al. Reversal of thrombin-induced deactivation of CD39/ATPDase in endothelial cells by HMG-CoA reductase inhibition: effects on Rho-GTPase and adenosine nucleotide metabolism. Arterioscler. Thromb. Vasc. Biol. 22, 894–900 (2002).

    Article  CAS  PubMed  Google Scholar 

  211. Kaneider, N. C., Mosheimer, B., Reinisch, N., Patsch, J. R. & Wiedermann, C. J. Inhibition of thrombin-induced signaling by resveratrol and quercetin: effects on adenosine nucleotide metabolism in endothelial cells and platelet-neutrophil interactions. Thromb. Res. 114, 185–194 (2004).

    Article  CAS  PubMed  Google Scholar 

  212. Abu-Zaid, M. H., Ghany, S. E. A. & Gaber, R. A. Effect of statins as modulators of CD39+ tregs in patients with rheumatoid arthritis who were unsuccessfully treated with methotrexate. Egypt. Rheumatol. Rehabil. 45, 1–8 (2018).

    Article  Google Scholar 

  213. Cao, J. et al. Protective properties of sesamin against fluoride-induced oxidative stress and apoptosis in kidney of carp (Cyprinus carpio) via JNK signaling pathway. Aquat. Toxicol. 167, 180–190 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Kong, X. et al. Sesamin ameliorates advanced glycation end products-induced pancreatic beta-cell dysfunction and apoptosis. Nutrients 7, 4689–4704 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Monteiro, E. M. et al. Antinociceptive and anti-inflammatory activities of the sesame oil and sesamin. Nutrients 6, 1931–1944 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Nakano, D. et al. Effects of sesamin on aortic oxidative stress and endothelial dysfunction in deoxycorticosterone acetate-salt hypertensive rats. Biol. Pharm. Bull. 26, 1701–1705 (2003).

    Article  CAS  PubMed  Google Scholar 

  217. Wu, X. Q. et al. Sesamin exerts renoprotective effects by enhancing NO bioactivity in renovascular hypertensive rats fed with high-fat-sucrose diet. Eur. J. Pharmacol. 683, 231–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  218. Robson, S. C. et al. Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Semin. Thromb. Hemost. 31, 217–233 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Li, K. et al. Sesamin protects against renal ischemia reperfusion injury by promoting CD39-adenosine-A2AR signal pathway in mice. Am. J. Transl. Res. 8, 2245–2254 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Correa-Costa, M. et al. Carbon monoxide protects the kidney through the central circadian clock and CD39. Proc. Natl Acad. Sci. USA 115, E2302–E2310 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Eckle, T. et al. Cardioprotection by ecto-5’-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115, 1581–1590 (2007).

    Article  CAS  PubMed  Google Scholar 

  222. Eckle, T. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat. Med. 18, 774–782 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhou, Q. et al. Ferulic acid protected from kidney ischemia reperfusion injury in mice: possible mechanism through increasing adenosine generation via HIF-1alpha. Inflammation 41, 2068–2078 (2018).

    Article  CAS  PubMed  Google Scholar 

  224. Dorneles, G. P., da Silva, I. M., Peres, A. & Romao, P. R. T. Physical fitness modulates the expression of CD39 and CD73 on CD4+ CD25 and CD4+ CD25+ T cells following high intensity interval exercise. J. Cell Biochem. 120, 10726–10736 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Didsbury, M. et al. Exercise training in solid organ transplant recipients: a systematic review and meta-analysis. Transplantation 95, 679–687 (2013).

    Article  CAS  PubMed  Google Scholar 

  226. Sashindranath, M. et al. Development of a novel strategy to target CD39 antithrombotic activity to the endothelial-platelet microenvironment in kidney ischemia-reperfusion injury. Purinergic Signal. 13, 259–265 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.C.R. is funded by the Department of Defence grant W81XWH-16-1-0464 and also previously the National Institutes of Health grants R21-CA221702, R01-DK108894, R01-DK10372, 1R01-AI132389 and 5R01DK104714. B.K.K. has been supported by the US Department of Veterans Affairs Merit Review Program and also previously by the National Institutes of Health grants R01-DK061183 and R21-DK081041, and a pre-clinical research grant from AstraZeneca.

Author information

Authors and Affiliations

Authors

Contributions

K.M.D., B.K.K. and S.C.R. all contributed to researching data for the article, writing the article and reviewing and editing the manuscript before submission. All authors substantially contributed to the discussion of the review contents.

Corresponding author

Correspondence to Karen M. Dwyer.

Ethics declarations

Competing interests

K.M.D. has no conflicts to declare. S.C.R. has had grant support from Tizona for development and characterization of antibodies to CD39. B.K.K. received research grant support and collaborated with AstraZeneca, and has United States patents issued for the use of P2Y2 and P2Y12 antagonists for the treatment of nephrogenic diabetes insipidus and other diseases.

Additional information

Peer review information

Nature Reviews Nephrology thanks Gennady Yegutkin, Matthew Bailey and the other, anonymous, reviewer(s) for their contributions to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

G proteins

A family of GTPase proteins involved in transmitting signals from extracellular stimuli to the cell interior.

Damage-associated molecular pattern

(DAMP). Molecules released from damaged or dying cells that trigger immune responses by interacting with pattern recognition receptors.

Purinome

All the proteins in a cell that utilize purine cofactors.

Treg-specific demethylated region

An evolutionarily conserved non-coding element within the FOXP3 gene locus that controls FOXP3 expression.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwyer, K.M., Kishore, B.K. & Robson, S.C. Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. Nat Rev Nephrol 16, 509–524 (2020). https://doi.org/10.1038/s41581-020-0304-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-020-0304-7

  • Springer Nature Limited

This article is cited by

Navigation