Skip to main content

Advertisement

Log in

Purinergic signaling in hepatic disease

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular purines (ATP and adenosine) are ubiquitous intercellular messengers. During tissular damage, they function as damage-associated molecular patterns (DAMPs). In this context, purines announce tissue alterations to initiate a reparative response that involve the formation of the inflammasome complex and the recruitment of specialized cells of the immune system. The present review focuses on the role of the purinergic system in liver damage, mainly during the onset and development of fibrosis. After hepatocellular injury, extracellular ATP promotes a signaling cascade that ameliorates tissue alterations to restore the hepatic function. However, if cellular damage becomes chronic, ATP orchestrates an aberrant reparative process that results in severe liver diseases such as fibrosis and cirrhosis. ATP and adenosine, their receptors, and extracellular ectonucleotidases are mediators of unique processes that will be reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fustin J-M, Doi M, Yamada H et al (2012) Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep 1:341–349. https://doi.org/10.1016/j.celrep.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Ananian P, Hardwigsen J, Bernard D, Le Treut YP (2005) Serum acute-phase protein level as indicator for liver failure after liver resection. Hepatogastroenterology 52(63):857–861

    CAS  PubMed  Google Scholar 

  3. Rőszer T (2014) The invertebrate midintestinal gland (“hepatopancreas”) is an evolutionary forerunner in the integration of immunity and metabolism. Cell Tissue Res 358:685–695. https://doi.org/10.1007/s00441-014-1985-7

    Article  CAS  PubMed  Google Scholar 

  4. Mataix Verdú J, Martínez de Vitoria E (2009) Chapter 48. Liver and biliary tract. In: Treaty of nutrition and feeding. OCEÁNO/ergon, Spain, pp 1355–1369

    Google Scholar 

  5. Jungermann K, Katz N (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69:708–764. https://doi.org/10.1152/physrev.1989.69.3.708

    Article  CAS  PubMed  Google Scholar 

  6. Ishibashi H, Nakamura M, Komori A et al (2009) Liver architecture, cell function, and disease. Semin Immunopathol 31:399–409. https://doi.org/10.1007/s00281-009-0155-6

    Article  PubMed  Google Scholar 

  7. Wang G-P, Xu C-S (2010) Reference gene selection for real-time RT-PCR in eight kinds of rat regenerating hepatic cells. Mol Biotechnol 46:49–57. https://doi.org/10.1007/s12033-010-9274-5

    Article  CAS  PubMed  Google Scholar 

  8. Martinez-Hernandez A, Amenta PS (1995) The extracellular matrix in hepatic regeneration. FASEB J 9(14):1401–1410

    Article  CAS  PubMed  Google Scholar 

  9. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10:417–426. https://doi.org/10.1016/S1097-2765(02)00599-3

    Article  CAS  PubMed  Google Scholar 

  10. Martinez-Hernandez A, Amenta PS (1993) The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat Histopathol 423:1–11

    Article  CAS  PubMed  Google Scholar 

  11. Baiocchini A, Montaldo C, Conigliaro A et al (2016) Extracellular matrix molecular remodeling in human liver fibrosis evolution. PLoS One 11:e0151736. https://doi.org/10.1371/journal.pone.0151736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elpek GÖ (2014) Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: an update. World J Gastroenterol 20:7260–7276. https://doi.org/10.3748/wjg.v20.i23.7260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKillop IH, Moran DM, Jin X, Koniaris LG (2006) Molecular pathogenesis of hepatocellular carcinoma. J Surg Res 136:125–135. https://doi.org/10.1016/j.jss.2006.04.013

    Article  CAS  PubMed  Google Scholar 

  14. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  15. Di Virgilio F, Vuerich M (2015) Purinergic signaling in the immune system. Auton Neurosci 191:117–123. https://doi.org/10.1016/j.autneu.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  16. Fredholm BB, IJzerman AP, Jacobson KA et al (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34. https://doi.org/10.1124/pr.110.003285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Webb TE, Simon J, Krishek BJ et al (1993) Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett 324:219–225

    Article  CAS  PubMed  Google Scholar 

  18. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  19. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99:16–34. https://doi.org/10.1113/expphysiol.2013.071951

    Article  CAS  PubMed  Google Scholar 

  20. von Kügelgen I, Harden TK (2011) Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv Pharmacol 61:373–415. https://doi.org/10.1016/B978-0-12-385526-8.00012-6

    Article  CAS  Google Scholar 

  21. Bonora M, Patergnani S, Rimessi A et al (2012) ATP synthesis and storage. Purinergic Signal 8:343–357. https://doi.org/10.1007/s11302-012-9305-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramzan R, Staniek K, Kadenbach B, Vogt S (2010) Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta 1797:1672–1680. https://doi.org/10.1016/j.bbabio.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  23. Cui JD, Xu ML, Liu EYL et al (2016) Expression of globular form acetylcholinesterase is not altered in P2Y1R knock-out mouse brain. Chem Biol Interact 259:291–294. https://doi.org/10.1016/j.cbi.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  24. Braun M, Wendt A, Karanauskaite J et al (2007) Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic beta cells. J Gen Physiol 129:221–231. https://doi.org/10.1085/jgp.200609658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pablo Huidobro-Toro J, Verónica Donoso M (2004) Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol 500:27–35. https://doi.org/10.1016/j.ejphar.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  26. Choi RCY, Siow NL, Cheng AWM et al (2003) ATP acts via P2Y1 receptors to stimulate acetylcholinesterase and acetylcholine receptor expression: transduction and transcription control. J Neurosci 23:4445–4456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cotrina ML, Lin JH, López-García JC et al (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abudara V, Retamal MA, Del Rio R, Orellana JA (2018) Synaptic functions of hemichannels and pannexons: a double-edged sword. Front Mol Neurosci 11:435. https://doi.org/10.3389/fnmol.2018.00435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elliott MR, Chekeni FB, Trampont PC et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286. https://doi.org/10.1038/nature08296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Idzko M, Ferrari D, Eltzschig HK (2014) Nucleotide signalling during inflammation. Nature 509:310–317. https://doi.org/10.1038/nature13085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29. https://doi.org/10.1016/j.tins.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  33. Martínez-Ramírez AS, Vázquez-Cuevas FG (2015) Purinergic signaling in the ovary. Mol Reprod Dev 82:839–848. https://doi.org/10.1002/mrd.22537

    Article  CAS  PubMed  Google Scholar 

  34. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9. https://doi.org/10.1038/cddis.2009.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dixon CJ, White PJ, Hall JF et al (2005) Regulation of human hepatocytes by P2Y receptors: control of glycogen phosphorylase, Ca2+, and mitogen-activated protein kinases. J Pharmacol Exp Ther 313:1305–1313. https://doi.org/10.1124/jpet.104.082743

    Article  CAS  PubMed  Google Scholar 

  36. Thevananther S, Sun H, Li D et al (2004) Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Hepatology 39:393–402. https://doi.org/10.1002/hep.20075

    Article  CAS  PubMed  Google Scholar 

  37. Keppens S, De Wulf H (1986) Characterization of the liver P2-purinoceptor involved in the activation of glycogen phosphorylase. Biochem J 240:367–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tackett BC, Sun H, Mei Y et al (2014) P2Y2 purinergic receptor activation is essential for efficient hepatocyte proliferation in response to partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 307:G1073–G1087. https://doi.org/10.1152/ajpgi.00092.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dranoff JA, Kruglov EA, Abreu-Lanfranco O et al (2007) Prevention of liver fibrosis by the purinoceptor antagonist pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonate (PPADS). In Vivo 21:957–965

    CAS  PubMed  Google Scholar 

  40. Ayata CK, Ganal SC, Hockenjos B et al (2012) Purinergic P2Y2 receptors promote neutrophil infiltration and hepatocyte death in mice with acute liver injury. Gastroenterology 143:1620–1629.e4. https://doi.org/10.1053/j.gastro.2012.08.049

    Article  CAS  PubMed  Google Scholar 

  41. Emmett DS, Feranchak A, Kilic G et al (2008) Characterization of ionotrophic purinergic receptors in hepatocytes. Hepatology 47:698–705. https://doi.org/10.1002/hep.22035

    Article  CAS  PubMed  Google Scholar 

  42. Besnard A, Gautherot J, Julien B et al (2016) The P2X4 purinergic receptor impacts liver regeneration after partial hepatectomy in mice through the regulation of biliary homeostasis. Hepatology 64:941–953. https://doi.org/10.1002/hep.28675

    Article  CAS  PubMed  Google Scholar 

  43. Le Guilcher C, Garcin I, Dellis O et al (2018) The P2X4 purinergic receptor regulates hepatic myofibroblast activation during liver fibrogenesis. J Hepatol 69:644–653. https://doi.org/10.1016/j.jhep.2018.05.020

    Article  CAS  PubMed  Google Scholar 

  44. Peng Z-W, Rothweiler S, Wei G et al (2017) The ectonucleotidase ENTPD1/CD39 limits biliary injury and fibrosis in mouse models of sclerosing cholangitis. Hepatol Commun 1:957–972. https://doi.org/10.1002/hep4.1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Savio LEB, de Andrade MP, Figliuolo VR et al (2017) CD39 limits P2X7 receptor inflammatory signaling and attenuates sepsis-induced liver injury. J Hepatol 67:716–726. https://doi.org/10.1016/j.jhep.2017.05.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feldbrügge L, Jiang ZG, Csizmadia E et al (2018) Distinct roles of ecto-nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in liver regeneration and fibrosis. Purinergic Signal 14:37–46. https://doi.org/10.1007/s11302-017-9590-3

    Article  CAS  PubMed  Google Scholar 

  47. Chan ESL, Montesinos MC, Fernandez P et al (2006) Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br J Pharmacol 148:1144–1155. https://doi.org/10.1038/sj.bjp.0706812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Imarisio C, Alchera E, Sutti S et al (2012) Adenosine A(2a) receptor stimulation prevents hepatocyte lipotoxicity and non-alcoholic steatohepatitis (NASH) in rats. Clin Sci 123:323–332. https://doi.org/10.1042/CS20110504

    Article  CAS  Google Scholar 

  49. Yang P, Chen P, Wang T et al (2013) Loss of A(1) adenosine receptor attenuates alpha-naphthylisothiocyanate-induced cholestatic liver injury in mice. Toxicol Sci 131:128–138. https://doi.org/10.1093/toxsci/kfs263

    Article  CAS  PubMed  Google Scholar 

  50. Yang P, Han Z, Chen P et al (2010) A contradictory role of A1 adenosine receptor in carbon tetrachloride- and bile duct ligation-induced liver fibrosis in mice. J Pharmacol Exp Ther 332:747–754. https://doi.org/10.1124/jpet.109.162727

    Article  CAS  PubMed  Google Scholar 

  51. Yang P, Wang Z, Zhan Y et al (2013) Endogenous A1 adenosine receptor protects mice from acute ethanol-induced hepatotoxicity. Toxicology 309:100–106. https://doi.org/10.1016/j.tox.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  52. Amaral SS, Oliveira AG, Marques PE, Quintão JLD, Pires DA, Resende RR, Sousa BR, Melgaço JG, Pinto MA, Russo RC, Gomes AKC, Andrade LM, Zanin RF, Pereira RVS, Bonorino C, Soriani FM, Lima CX, Cara DC, Teixeira MM, Leite MF, Menezes GB (2013) Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Communication and Signaling 11(1):10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abdelaziz HA, Shaker ME, Hamed MF, Gameil NM (2017) Repression of acetaminophen-induced hepatotoxicity by a combination of celastrol and brilliant blue G. Toxicol Lett 275:6–18. https://doi.org/10.1016/j.toxlet.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  54. Xie Y, Williams CD, McGill MR et al (2013) Purinergic receptor antagonist A438079 protects against acetaminophen-induced liver injury by inhibiting p450 isoenzymes, not by inflammasome activation. Toxicol Sci 131:325–335. https://doi.org/10.1093/toxsci/kfs283

    Article  CAS  PubMed  Google Scholar 

  55. Hoque R, Sohail MA, Salhanick S et al (2012) P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. Am J Physiol Gastrointest Liver Physiol 302:G1171–G1179. https://doi.org/10.1152/ajpgi.00352.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shang Y, Li XF, Jin MJ, Li Y, Wu YL, Jin Q, Zhang Y, Li X, Jiang M, Cui BW, Lian LH, Nan JX (2018) Leucodin attenuates inflammatory response in macrophages and lipid accumulation in steatotic hepatocytes via P2x7 receptor pathway: A potential role in alcoholic liver disease. Biomedicine & Pharmacotherapy 107:374–381

  57. Huang C, Yu W, Cui H, Wang Y, Zhang L, Han F, Huang T (2014) P2X7 blockade attenuates mouse liver fibrosis. Molecular Medicine Reports 9(1):57–62

    Article  PubMed  Google Scholar 

  58. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez J, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vivoli E, Cappon A, Milani S, Piombanti B, Provenzano A, Novo E, Masi A, Navari N, Narducci R, Mannaioni G, Moneti G, Oliveira CP, Parola M, Marra F (2016) NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling. Clinical Science 130(20):1793–1806

    Article  CAS  PubMed  Google Scholar 

  60. Ni J, Zhang Z, Luo X et al (2016) Plasticizer DBP activates NLRP3 inflammasome through the P2X7 receptor in HepG2 and L02 cells. J Biochem Mol Toxicol 30:178–185. https://doi.org/10.1002/jbt.21776

    Article  CAS  PubMed  Google Scholar 

  61. Gong Z, Zhou J, Zhao S et al (2016) Chenodeoxycholic acid activates NLRP3 inflammasome and contributes to cholestatic liver fibrosis. Oncotarget 7:83951–83963. https://doi.org/10.18632/oncotarget.13796

    Article  PubMed  PubMed Central  Google Scholar 

  62. Szuster-Ciesielska A, Sztanke K, Kandefer-Szerszeń M (2012) A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A(2A) receptors in ethanol-activated liver stellate cells. Chem Biol Interact 195:18–24. https://doi.org/10.1016/j.cbi.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  63. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172. https://doi.org/10.1152/physrev.00013.2007

    Article  CAS  PubMed  Google Scholar 

  64. Takemura S, Kawada N, Hirohashi K et al (1994) Nucleotide receptors in hepatic stellate cells of the rat. FEBS Lett 354:53–56

    Article  CAS  PubMed  Google Scholar 

  65. Dranoff JA, Ogawa M, Kruglov EA et al (2004) Expression of P2Y nucleotide receptors and ectonucleotidases in quiescent and activated rat hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 287:G417–G424. https://doi.org/10.1152/ajpgi.00294.2003

    Article  CAS  PubMed  Google Scholar 

  66. Benitez-Rajal J, Lorite M-J, Burt AD et al (2006) Phospholipase D and extracellular signal-regulated kinase in hepatic stellate cells: effects of platelet-derived growth factor and extracellular nucleotides. Am J Physiol Gastrointest Liver Physiol 291:G977–G986. https://doi.org/10.1152/ajpgi.00041.2006

    Article  CAS  PubMed  Google Scholar 

  67. Yamaguchi M, Saito S-Y, Nishiyama R et al (2017) Caffeine suppresses the activation of hepatic stellate cells cAMP-independently by antagonizing adenosine receptors. Biol Pharm Bull 40:658–664. https://doi.org/10.1248/bpb.b16-00947

    Article  CAS  PubMed  Google Scholar 

  68. Wang H, Guan W, Yang W et al (2014) Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway. PLoS One 9:e92482. https://doi.org/10.1371/journal.pone.0092482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Che J, Chan ESL, Cronstein BN (2007) Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 72:1626–1636. https://doi.org/10.1124/mol.107.038760

    Article  CAS  PubMed  Google Scholar 

  70. Pinzani M (2002) PDGF and signal transduction in hepatic stellate cells. Front Biosci 7:d1720–d1726

    Article  CAS  PubMed  Google Scholar 

  71. Hashmi AZ, Hakim W, Kruglov EA et al (2007) Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 292:G395–G401. https://doi.org/10.1152/ajpgi.00208.2006

    Article  CAS  PubMed  Google Scholar 

  72. Yang Y, Wang H, Lv X et al (2015) Involvement of cAMP-PKA pathway in adenosine A1 and A2A receptor-mediated regulation of acetaldehyde-induced activation of HSCs. Biochimie 115:59–70. https://doi.org/10.1016/j.biochi.2015.04.019

    Article  CAS  PubMed  Google Scholar 

  73. Velasco-Loyden G, Pérez-Carreón JI, Agüero JFC et al (2010) Prevention of in vitro hepatic stellate cells activation by the adenosine derivative compound IFC305. Biochem Pharmacol 80:1690–1699. https://doi.org/10.1016/j.bcp.2010.08.017

    Article  CAS  PubMed  Google Scholar 

  74. Pérez-Carreón JI, Martínez-Pérez L, Loredo ML et al (2010) An adenosine derivative compound, IFC305, reverses fibrosis and alters gene expression in a pre-established CCl(4)-induced rat cirrhosis. Int J Biochem Cell Biol 42:287–296. https://doi.org/10.1016/j.biocel.2009.11.005

    Article  CAS  PubMed  Google Scholar 

  75. Ikeda N, Murata S, Maruyama T et al (2011) Platelet-derived adenosine 5′-triphosphate suppresses activation of human hepatic stellate cell: in vitro study. Hepatol Res 42:91–102. https://doi.org/10.1111/j.1872-034X.2011.00893.x

    Article  PubMed  Google Scholar 

  76. Toki Y, Takenouchi T, Harada H et al (2015) Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem Biophys Res Commun 458:771–776. https://doi.org/10.1016/j.bbrc.2015.02.011

    Article  CAS  PubMed  Google Scholar 

  77. Kojima S, Negishi Y, Tsukimoto M et al (2014) Purinergic signaling via P2X7 receptor mediates IL-1β production in Kupffer cells exposed to silica nanoparticle. Toxicology 321:13–20. https://doi.org/10.1016/j.tox.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  78. Mihm S (2018) Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver. Int J Mol Sci 19:E3104. https://doi.org/10.3390/ijms19103104

    Article  CAS  PubMed  Google Scholar 

  79. Englezou PC, Rothwell SW, Ainscough JS et al (2015) P2X7R activation drives distinct IL-1 responses in dendritic cells compared to macrophages. Cytokine 74:293–304. https://doi.org/10.1016/j.cyto.2015.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ainscough JS, Frank Gerberick G, Zahedi-Nejad M et al (2014) Dendritic cell IL-1α and IL-1β are polyubiquitinated and degraded by the proteasome. J Biol Chem 289:35582–35592. https://doi.org/10.1074/jbc.M114.595686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ting JP-Y, Lovering RC, Alnemri ES et al (2008) The NLR gene family: a standard nomenclature. Immunity 28:285–287. https://doi.org/10.1016/j.immuni.2008.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davis BK, Wen H, Ting JP-Y (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735. https://doi.org/10.1146/annurev-immunol-031210-101405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Di Virgilio F (2013) The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev 65:872–905. https://doi.org/10.1124/pr.112.006171

    Article  CAS  PubMed  Google Scholar 

  84. Coddou C, Yan Z, Obsil T et al (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63:641–683. https://doi.org/10.1124/pr.110.003129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Muñoz-Planillo R, Kuffa P, Martínez-Colón G et al (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pétrilli V, Papin S, Dostert C et al (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589. https://doi.org/10.1038/sj.cdd.4402195

    Article  CAS  PubMed  Google Scholar 

  87. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

    CAS  PubMed  Google Scholar 

  88. Shi H, Wang Y, Li X et al (2016) NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol 17:250–258. https://doi.org/10.1038/ni.3333

    Article  CAS  PubMed  Google Scholar 

  89. He Y, Zeng MY, Yang D et al (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530:354–357. https://doi.org/10.1038/nature16959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Franceschini A, Capece M, Chiozzi P et al (2015) The P2X7 receptor directly interacts with the NLRP3 inflammasome scaffold protein. FASEB J 29:2450–2461. https://doi.org/10.1096/fj.14-268714

    Article  CAS  PubMed  Google Scholar 

  91. de Rivero Vaccari JP, Bastien D, Yurcisin G et al (2012) P2X4 receptors influence inflammasome activation after spinal cord injury. J Neurosci 32:3058–3066. https://doi.org/10.1523/JNEUROSCI.4930-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen K, Zhang J, Zhang W et al (2013) ATP-P2X4 signaling mediates NLRP3 inflammasome activation: a novel pathway of diabetic nephropathy. Int J Biochem Cell Biol 45:932–943. https://doi.org/10.1016/j.biocel.2013.02.009

    Article  CAS  PubMed  Google Scholar 

  93. Burnstock G, Vaughn B, Robson SC (2014) Purinergic signalling in the liver in health and disease. Purinergic Signal 10:51–70. https://doi.org/10.1007/s11302-013-9398-8

    Article  CAS  PubMed  Google Scholar 

  94. Cover C, Liu J, Farhood A et al (2006) Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 216:98–107. https://doi.org/10.1016/j.taap.2006.04.010

    Article  CAS  PubMed  Google Scholar 

  95. Lang CH, Silvis C, Deshpande N et al (2003) Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1beta, -6, and high-mobility-group protein-1 in skeletal muscle. Shock 19:538–546. https://doi.org/10.1097/01.shk.0000055237.25446.80

    Article  CAS  PubMed  Google Scholar 

  96. Ganz M, Csak T, Nath B, Szabo G (2011) Lipopolysaccharide induces and activates the Nalp3 inflammasome in the liver. World J Gastroenterol 17:4772–4778. https://doi.org/10.3748/wjg.v17.i43.4772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Imaeda AB, Watanabe A, Sohail MA et al (2009) Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119:305–314. https://doi.org/10.1172/JCI35958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Masumoto J, Taniguchi S, Nakayama J et al (2001) Expression of apoptosis-associated speck-like protein containing a caspase recruitment domain, a pyrin N-terminal homology domain-containing protein, in normal human tissues. J Histochem Cytochem 49:1269–1275. https://doi.org/10.1177/002215540104901009

    Article  CAS  PubMed  Google Scholar 

  99. Boaru SG, Borkham-Kamphorst E, Tihaa L et al (2012) Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (Lond) 9:49. https://doi.org/10.1186/1476-9255-9-49

    Article  CAS  Google Scholar 

  100. Xiao J, Zhu Y, Liu Y et al (2014) Lycium barbarum polysaccharide attenuates alcoholic cellular injury through TXNIP-NLRP3 inflammasome pathway. Int J Biol Macromol 69:73–78. https://doi.org/10.1016/j.ijbiomac.2014.05.034

    Article  CAS  PubMed  Google Scholar 

  101. Csak T, Ganz M, Pespisa J et al (2011) Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 54:133–144. https://doi.org/10.1002/hep.24341

    Article  CAS  PubMed  Google Scholar 

  102. Watanabe A, Sohail MA, Gomes DA et al (2009) Inflammasome-mediated regulation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 296:G1248–G1257. https://doi.org/10.1152/ajpgi.90223.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Inzaugarat ME, Johnson CD, Holtmann TM et al (2019) NLR family pyrin domain-containing 3 inflammasome activation in hepatic stellate cells induces liver fibrosis in mice. Hepatology 69:845–859. https://doi.org/10.1002/hep.30252

    Article  CAS  PubMed  Google Scholar 

  104. Zhang W-J, Fang Z-M, Liu W-Q (2019) NLRP3 inflammasome activation from Kupffer cells is involved in liver fibrosis of Schistosoma japonicum-infected mice via NF-κB. Parasit Vectors 12:29. https://doi.org/10.1186/s13071-018-3223-8

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang F, Guan M, Wei L, Yan H (2019) IL-18 promotes the secretion of matrix metalloproteinases in human periodontal ligament fibroblasts by activating NF-κB signaling. Molecular Medicine Reports; Athens 19:703. https://doi.org/10.3892/mmr.2018.9697

    Article  CAS  Google Scholar 

  106. Imamura M, Tsutsui H, Yasuda K et al (2009) Contribution of TIR domain-containing adapter inducing IFN-beta-mediated IL-18 release to LPS-induced liver injury in mice. J Hepatol 51:333–341. https://doi.org/10.1016/j.jhep.2009.03.027

    Article  CAS  PubMed  Google Scholar 

  107. Jiang S, Zhang Y, Zheng J-H et al (2017) Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol Res 117:82–93. https://doi.org/10.1016/j.phrs.2016.11.040

    Article  CAS  PubMed  Google Scholar 

  108. Vivoli E, Cappon A, Milani S et al (2016) NLRP3 inflammasome as a target of berberine in experimental murine liver injury: interference with P2X7 signalling. Clin Sci 130:1793–1806. https://doi.org/10.1042/CS20160400

    Article  CAS  Google Scholar 

  109. Gao H, Lv Y, Liu Y et al (2019) Wolfberry‐derived zeaxanthin dipalmitate attenuates ethanol‐induced hepatic damage. Mol Nutr Food Res 63:e1801339. https://doi.org/10.1002/mnfr.201801339

    Article  CAS  PubMed  Google Scholar 

  110. Kanneganti TD, Lamkanfi M, Kim YG et al (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. - PubMed - NCBI. Immunity 26(4):433–443

    Article  CAS  PubMed  Google Scholar 

  111. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082. https://doi.org/10.1038/sj.emboj.7601378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gicquel T, Victoni T, Fautrel A et al (2014) Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages. Clin Exp Pharmacol Physiol 41:279–286. https://doi.org/10.1111/1440-1681.12214

    Article  CAS  PubMed  Google Scholar 

  113. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. J Immunol 180:7147–7157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Jessica González Norris for proofreading.

Funding

This work was funded by PAPIIT-UNAM, number IN201017 to FGV-C and IN201618 to MD-M, and CONACyT-México, number 284-557 to MD-M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Vázquez-Cuevas.

Ethics declarations

Conflict of interest

E. Velázquez-Miranda declares that he has no conflict of interest.

M. Díaz-Muñoz declares that he has no conflict of interest.

Francisco Gabriel Vázquez-Cuevas declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez-Miranda, E., Díaz-Muñoz, M. & Vázquez-Cuevas, F.G. Purinergic signaling in hepatic disease. Purinergic Signalling 15, 477–489 (2019). https://doi.org/10.1007/s11302-019-09680-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-019-09680-3

Keywords

Navigation