Skip to main content

Advertisement

Log in

Alternative splicing of G protein-coupled receptors: physiology and pathophysiology

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The G protein-coupled receptors (GPCRs) are a superfamily of transmembrane receptors that have a broad distribution and can collectively recognise a diverse array of ligands. Activation or inhibition of GPCR signalling can affect many (patho)physiological processes, and consequently they are a major target for existing and emerging drug therapies. A common observation has been that the pharmacological, signalling and regulatory properties of GPCRs can differ in a cell- and tissue-specific manner. Such “phenotypic” diversity might be attributable to post-translational modifications and/or association of GPCRs with accessory proteins, however, post-transcriptional mechanisms are also likely to contribute. Although approximately 50% of GPCR genes are intronless, those that possess introns can undergo alternative splicing, generating GPCR subtype isoforms that may differ in their pharmacological, signalling and regulatory properties. In this review we shall highlight recent research into GPCR splice variation and discuss the potential consequences this might have for GPCR function in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris,W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Google Scholar 

  2. Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua S, Herreman T, Tongprasit W, Barbano PE, Bussemaker HJ, White KP (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306:655–660

    PubMed  CAS  Google Scholar 

  3. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    PubMed  CAS  Google Scholar 

  4. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136:701–718

    PubMed  CAS  Google Scholar 

  5. McGlincy NJ, Smith CW (2008) Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends Biochem Sci 33:385–393

    PubMed  CAS  Google Scholar 

  6. Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761

    PubMed  CAS  Google Scholar 

  7. Srebrow A, Kornblihtt AR (2006) The connection between splicing and cancer. J Cell Sci 119:2635–2641

    PubMed  CAS  Google Scholar 

  8. Hellmich MR, Rui XL, Hellmich HL, Fleming RYD, Evers BM, Townsend CM (2000) Human colorectal cancers express a constitutively active cholecystokinin-B/gastrin receptor that stimulates cell growth. J Biol Chem 275:32122–32128

    PubMed  CAS  Google Scholar 

  9. Lee HJ, Wall B, Chen S (2008) G-protein-coupled receptors and melanoma. Pigment Cell Melanoma Res 21:415–428

    PubMed  CAS  Google Scholar 

  10. Bond RA, Ijzerman AP (2006) Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci 27:92–96

    PubMed  CAS  Google Scholar 

  11. Insel PA, Tang CM, Hahntow I, Michel MC (2007) Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim Biophys Acta 1768:994–1005

    PubMed  CAS  Google Scholar 

  12. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    PubMed  Google Scholar 

  13. Nelson CP, Challiss RAJ (2007) “Phenotypic” pharmacology: the influence of cellular environment on G protein-coupled receptor antagonist and inverse agonist pharmacology. Biochem Pharmacol 73:737–751

    PubMed  CAS  Google Scholar 

  14. Joun H, Lanske B, Karperien M, Qian F, Defize L, Abou-Samra A (1997) Tissue-specific transcription start sites and alternative splicing of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor gene: a new PTH/PTHrP receptor splice variant that lacks the signal peptide. Endocrinology 138:1742–1749

    PubMed  CAS  Google Scholar 

  15. Gentles AJ, Karlin S (1999) Why are human G-protein-coupled receptors predominantly intronless? Trends Genet 15:47–49

    PubMed  CAS  Google Scholar 

  16. Bjarnadottir TK, Geirardsdóttir K, Ingemansson M, Mirza MAI, Fredrikssonn R, Schioth HB (2007) Identification of novel splice variants of adhesion G protein-coupled receptors. Gene 387:38–48

    PubMed  CAS  Google Scholar 

  17. Kilpatrick GJ, Dautzenberg FM, Martin GR, Eglen RM (1999) 7TM receptors: the splicing on the cake. Trends Pharmacol Sci 20:294–301

    PubMed  CAS  Google Scholar 

  18. Minneman KP (2001) Splice variants of G protein-coupled receptors. Mol Interv 1:108–116

    PubMed  CAS  Google Scholar 

  19. Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326:553–572

    PubMed  CAS  Google Scholar 

  20. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    PubMed  CAS  Google Scholar 

  21. Einstein R, Jordan H, Zhou W, Brenner M, Moses EG, Liggett SB (2008) Alternative splicing of the G protein-coupled receptor superfamily in human airway smooth muscle diversifies the complement of receptors. Proc Natl Acad Sci USA 105:5230–5235

    PubMed  CAS  Google Scholar 

  22. Kreth S, Ledderose C, Kaufmann I, Groeger G, Thiel M (2008) Differential expression of 5′-UTR splice variants of the adenosine A2A receptor gene in human granulocytes: identification, characterization, and functional impact on activation. FASEB J 22:3276–3286

    PubMed  CAS  Google Scholar 

  23. Hawrylyshyn KA, Michelotti GA, Cogé F, Guénin SP, Schwinn DA (2004) Update on human α1-adrenoceptor subtype signaling and genomic organization. Trends Pharmacol Sci 25:449–455

    PubMed  CAS  Google Scholar 

  24. Martin MM, Willardson BM, Burton GF, White CR, McLaughlin JN, Bray SM, Ogilvie JW Jr, Elton TS (2001) Human angiotensin II type 1 receptor isoforms encoded by messenger RNA splice variants are functionally distinct. Mol Endocrinol 15:281–293

    PubMed  CAS  Google Scholar 

  25. Martin MM, Buckenberger JA, Knoell DL, Strauch AR, Elton TS (2006) TGF-β1 regulation of human AT1 receptor mRNA splice variants harboring exon-2. Mol Cell Endocrinol 249:21–31

    PubMed  CAS  Google Scholar 

  26. Nag K, Sultana N, Kato A, Hirose S (2007) Headless splice variant acting as dominant negative calcitonin receptor. Biochem Biophys Res Commun 362:1037–1043

    PubMed  CAS  Google Scholar 

  27. Seck T, Baron R, Horne WC (2003) The alternatively spliced delta-e13 transcript of the rabbit calcitonin receptor dimerizes with the C1a isoform and inhibits its surface expression. J Biol Chem 278:23085–23093

    PubMed  CAS  Google Scholar 

  28. Shire D, Carillon C, Kaghad M, Calandra B, Rinaldi-Carmona M, Le Fur G, Caput D, Ferrara A (1995) An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing. J Biol Chem 270:3726–3731

    PubMed  CAS  Google Scholar 

  29. Ryberg E, Vu HK, Larsson N, Groblewski T, Hjorth S, Elebring T, Sjogren S, Greasley PJ (2005) Identification and characterisation of a novel splice variant of the human CB1 receptor. FEBS Lett 579:259–264

    PubMed  CAS  Google Scholar 

  30. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, Sagrinati C, Mazzinghi B, Orlando C, Maggi E, Marra F, Romagnani S, Serio M, Romagnani P (2003) An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med 197:1537–1549

    PubMed  CAS  Google Scholar 

  31. Ding WQ, Kuntz SM, Miller LJ (2002) A misspliced form of the cholecystokinin-B/gastrin receptor in pancreatic carcinoma: role of reduced cellular U2AF35 and a suboptimal 3′-splicing site leading to retention of the fourth intron. Cancer Res 62:947–952

    PubMed  CAS  Google Scholar 

  32. Olszewska-Pazdrak B, Townsend CM Jr, Hellmich MR (2004) Agonist-independent activation of Src tyrosine kinase by a cholecystokinin-2 (CCK2) receptor splice variant. J Biol Chem 279:40400–40404

    PubMed  CAS  Google Scholar 

  33. Grammatopoulos DK, Hillhouse EW (2006) The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology. Endocrine Rev 27:260–286

    Google Scholar 

  34. Pisarchik A, Slominski AT (2001) Alternative splicing of CRH-R1 receptors in human and mouse skin: identification of new variants and their differential expression. FASEB J 15:2754–2756

    PubMed  CAS  Google Scholar 

  35. Sztainberg Y, Kuperman Y, Issler O, Gil S, Vaughan J, Rivier J, Vale W, Chen A (2009) A novel corticotropin-releasing factor receptor splice variant exhibits dominant negative activity: a putative link to stress-induced heart disease. FASEB J 23:2186–2196

    PubMed  CAS  Google Scholar 

  36. Monsma FJ, McVittie LD, Gerfen CR, Mahan LC, Sibley DR (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929

    PubMed  CAS  Google Scholar 

  37. Khan ZU, Mrzljak L, Gutierrez A, de la Calle A, Goldman-Rakic PS (1998) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 95:7731–7736

    PubMed  CAS  Google Scholar 

  38. Karpa KD, Lin R, Kabbani N, Levenson R (2000) The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3–D3nf interaction causes mislocalization of D3 receptors. Mol Pharmacol 58:677–683

    PubMed  CAS  Google Scholar 

  39. Tanoue A, Koshimizu TA, Tsuchiya M, Ishii K, Osawa M, Saeki M, Tsujimoto G (2002) Two novel transcripts for human endothelin B receptor produced by RNA editing/alternative splicing from a single gene. J Biol Chem 277:33205–33212

    PubMed  CAS  Google Scholar 

  40. Chiu PL, Hg BH, Chang GW, Gordon S, Lin HH (2008) Putative alternative trans-splicing of leukocyte adhesion-GPCR pre-mRNA generates functional chimeric receptors. FEBS Lett 582:792–798

    PubMed  CAS  Google Scholar 

  41. Babu PS, Krishnamurthy H, Chedrese PJ, Sairam MR (2000) Activation of extracellular-regulated kinase pathways in ovarian granulosa cells by the novel growth factor type 1 follicle-stimulating hormone receptor. Role in hormone signaling and cell proliferation. J Biol Chem 275:27615–27626

    PubMed  CAS  Google Scholar 

  42. Bowery NG, Bettler B, Froestl W, Gallagher JP, Marshall F, Raiteri M, Bonner TI, Enna SJ (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid-B receptors: structure and function. Pharmacol Rev 54:247–264

    PubMed  CAS  Google Scholar 

  43. Harada N, Yamada Y, Tsukiyama K, Yamada C, Nakamura Y, Mukai E, Hamasaki A, Liu X, Toyoda K, Seino Y, Inagaki N (2008) A novel GIP receptor splice variant influences GIP sensitivity of pancreatic β-cells in obese mice. Am J Physiol 294:E61–E68

    CAS  Google Scholar 

  44. Havt A, Schally AV, Halmos G, Varga JL, Toller GL, Horvath JE, Szepeshazi K, Koster F, Kovitz K, Groot K, Zarandi M, Kanashiro CA (2005) The expression of the pituitary growth hormone-releasing hormone receptor and its splice variants in normal and neoplastic human tissues. Proc Natl Acad Sci USA 102:17424–17429

    PubMed  CAS  Google Scholar 

  45. Hashimoto K, Koga M, Motomura T, Kasayama S, Kouhara H, Ohnishi T, Arita N, Hayakawa T, Sato B, Kishimoto T (1995) Identification of alternatively spliced messenger ribonucleic acid encoding truncated growth hormone-releasing hormone receptor in human pituitary adenomas. J Clin Endocrinol Metab 80:2933–2939

    PubMed  CAS  Google Scholar 

  46. Rekasi Z, Czompoly T, Schally AV, Halmos G (2000) Isolation and sequencing of cDNAs for splice variants of growth hormone-releasing hormone receptors from human cancers. Proc Natl Acad Sci USA 97:10561–10566

    PubMed  CAS  Google Scholar 

  47. Barabutis N, Tsellou E, Schally AV, Kouloheri S, Kalofoutis A, Kiaris H (2007) Stimulation of proliferation of MCF-7 breast cancer cells by a transfected splice variant of growth hormone-releasing hormone receptor. Proc Natl Acad Sci USA 104:5575–5579

    PubMed  CAS  Google Scholar 

  48. Garcia-Fernandez MO, Schally AV, Varga JL, Groot K, Busto R (2003) The expression of growth hormone-releasing hormone (GHRH) and its receptor splice variants in human breast cancer lines; the evaluation of signaling mechanisms in the stimulation of cell proliferation. Breast Cancer Res Treat 77:15–26

    PubMed  CAS  Google Scholar 

  49. Chatzistamou I, Volakaki AA, Schally AV, Kiaris H, Kittas C (2008) Expression of growth hormone-releasing hormone receptor splice variant 1 in primary human melanomas. Reg Peptides 147:33–36

    CAS  Google Scholar 

  50. Leurs R, Bakker RA, Timmerman H, de Esch IJ (2005) The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4:107–120

    PubMed  CAS  Google Scholar 

  51. Bakker RA, Lozada AF, van Marle A, Shenton FC, Drutel G, Karlstedt K, Hoffmann M, Lintunen M, Yamamoto Y, van Rijn RM, Chazot PL, Panula P, Leurs R (2006) Discovery of naturally-occurring splice variants of the rat histamine H3 receptor that act as dominant-negative isoforms. Mol Pharmacol 69:1194–1206

    PubMed  CAS  Google Scholar 

  52. van Rijn RM, van Marle A, Chazot PL, Langemeijer E, Qin Y, Shenton FC, Lim HD, Zuiderveld OP, Sansuk K, Dy M, Smit MJ, Tensen CP, Bakker RA, Leurs R (2008) Cloning and characterization of dominant-negative splice variants of the human histamine H4 receptor. Biochem J 414:121–131

    PubMed  Google Scholar 

  53. Bruysters M, Christin-Maitre S, Verhoef-Post M, Sultan C, Auger J, Faugeron I, Larue L, Lumbroso S, Themmen AP, Bouchard P (2008) A new LH receptor splice mutation responsible for male hypogonadism with subnormal sperm production in the propositus, and infertility with regular cycles in an affected sister. Hum Reprod 23:1917–1923

    PubMed  CAS  Google Scholar 

  54. Apaja PM, Tuusa JT, Pietilä EM, Rajaniemi HJ, Petaja-Repo UE (2006) Luteinizing hormone receptor ectodomain splice variant misroutes the full-length receptor into a subcompartment of the endoplasmic reticulum. Mol Biol Cell 17:2243–2255

    PubMed  CAS  Google Scholar 

  55. Noon LA, Bakmanidis A, Clark AJ, O’Shaughnessy PJ, King PJ (2006) Identification of a novel melanocortin 2 receptor splice variant in murine adipocytes: implications for post-transcriptional control of expression during adipogenesis. J Mol Endocrinol 37:415–420

    PubMed  CAS  Google Scholar 

  56. Francesconi A, Duvoisin RM (2002) Alternative splicing unmasks dendritic and axonal targeting signals in metabotropic glutamate receptor 1. J Neurosci 22:2196–2205

    PubMed  CAS  Google Scholar 

  57. Bovolin P, Bovetti S, Fasolo A, Katarova Z, Szabo G, Shipley MT, Margolis FL, Puche AC (2009) Developmental regulation of metabotropic glutamate receptor 1 splice variants in olfactory bulb mitral cells. J Neurosci Res 87:369–379

    PubMed  CAS  Google Scholar 

  58. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504

    PubMed  CAS  Google Scholar 

  59. Lai JP, Ho WZ, Kilpatrick LE, Wang X, Tuluc F, Korchak HM, Douglas SD (2006) Full-length and truncated neurokinin-1 receptor expression and function during monocyte/macrophage differentiation. Proc Natl Acad Sci USA 103:7771–7776

    PubMed  CAS  Google Scholar 

  60. Kage R, Leeman SE, Boyd ND (1993) Biochemical characterization of two different forms of the substance P receptor in rat submaxillary gland. J Neurochem 60:347–351

    PubMed  CAS  Google Scholar 

  61. Duric V, McCarson KE (2007) Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain 3:32

    PubMed  Google Scholar 

  62. Tulic F, Lai JP, Kilpatrick LE, Evans DL, Douglas SD (2009) Neurokinin 1 receptor isoforms and the control of innate immunity. Trends Immunol 30:271–276

    Google Scholar 

  63. Lai JP, Lai S, Tuluc F, Tansky MF, Kilpatrick LE, Leeman SE, Douglas SD (2008) Differences in the length of the C-terminus mediate functional properties of neurokinin-1 receptor. Proc Natl Acad Sci USA 105:12605–12610

    PubMed  CAS  Google Scholar 

  64. Lai JP, Cnaan A, Zhao H, Douglas SD (2008) Detection of full-length and truncated neurokinin-1 receptor mRNA expression in human brain regions. J Neurosci Methods 168:127–133

    PubMed  CAS  Google Scholar 

  65. Candenas ML, Cintado CG, Pennefather JN, Pereda MT, Loizaga JM, Maggi CA, Pinto FM (2002) Identification of a tachykinin NK2 receptor splice variant and its expression in human and rat tissues. Life Sci 72:269–277

    PubMed  CAS  Google Scholar 

  66. Bellucci F, Meini S, Catalioto RM, Catalani C, Giuliani S, Quartara L, Giolitti A, Faiella A, Rotondaro L, Candenas ML, Pinto FM, Maggi CA (2004) Pharmacological evaluation of α and β human tachykinin NK2 receptor splice variants expressed in CHO cells. Eur J Pharmacol 499:229–238

    PubMed  CAS  Google Scholar 

  67. Vendelin J, Pulkkinen V, Rehn M, Pirskanen A, Raisanen-Sokolowski A, Laitinen A, Laitinen LA, Kere J, Laitinen T (2005) Characterization of GPRA, a novel G protein-coupled receptor related to asthma. Am J Respir Cell Mol Biol 33:262–270

    PubMed  CAS  Google Scholar 

  68. Pasternak GW (2004) Multiple opiate receptors: déjà vu all over again. Neuropharmacology 47(Suppl 1):312–323

    PubMed  CAS  Google Scholar 

  69. Ding C, Racusen L, Wilson P, Burrow C, Levine MA (1995) Identification of an alternative spliced form of PTH/PTHrP receptor mRNA in immortalized renal tubular cells. J Bone Mineral Res 10(Suppl 1):S484

    Google Scholar 

  70. Breyer RM, Bagdassarian CK, Myers SA, Breyer MD (2001) Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41:661–690

    PubMed  CAS  Google Scholar 

  71. Vielhauer GA, Fujino H, Regan JW (2004) Cloning and localization of hFP(S): a six-transmembrane mRNA splice variant of the human FP prostanoid receptor. Arch Biochem Biophys 421:175–185

    PubMed  CAS  Google Scholar 

  72. Kotelevets L, Foudi N, Louedec L, Couvelard A, Chastre E, Norel X (2007) A new mRNA splice variant coding for the human EP3-I receptor isoform. Prostaglandin Leukot Essent Fatty Acid 77:195–201

    CAS  Google Scholar 

  73. Scott DJ, Layfield S, Yan Y, Sudo S, Hsueh AJ, Tregear GW, Bathgate RA (2006) Characterization of novel splice variants of LGR7 and LGR8 reveals that receptor signaling is mediated by their unique low density lipoprotein class A modules. J Biol Chem 281:34942–34954

    PubMed  CAS  Google Scholar 

  74. Lowndes K, Amano A, Yamamoto SY, Bryant-Greenwood GD (2006) The human relaxin receptor (LGR7): expression in the fetal membranes and placenta. Placenta 27:610–618

    PubMed  CAS  Google Scholar 

  75. Kern A, Hubbard D, Amano A, Bryant-Greenwood GD (2008) Cloning, expression, and functional characterization of relaxin receptor (leucine-rich repeat-containing G protein-coupled receptor 7) splice-variants from human fetal membranes. Endocrinology 149:1277–1294

    PubMed  CAS  Google Scholar 

  76. Korner M, Hayes GM, Rehmann R, Zimmermann A, Friess H, Miller LJ, Reubi JC (2005) Secretin receptors in normal and diseased human pancreas. Am J Pathol 167:959–968

    PubMed  Google Scholar 

  77. Korner MU, Hayes GM, Carrigan PE, Rehmann R, Miller LJ, Reubi JC (2008) Wild-type and splice-variant secretin receptors in lung cancer: over-expression in carcinoid tumors and peri-tumoral lung tissue. Mol Pathol 21:387–395

    Google Scholar 

  78. Taylor JE, Theveniau MA, Bashirzadeh R, Reisine T, Eden PA (1994) Detection of somatostatin receptor subtype 2 (SSTR2) in established tumors and tumor cell lines: evidence for SSTR2 heterogeneity. Peptides 15:1229–1236

    PubMed  CAS  Google Scholar 

  79. Moller LN, Stidsen CE, Hartmann B, Holst JJ (2003) Somatostatin receptors. Biochim Biophys Acta 1616:1–84

    PubMed  CAS  Google Scholar 

  80. Parent JL, Labrecque P, Orsini MJ, Benovic JL (1999) Internalization of the TXA2 receptor alpha and beta isoforms. Role of the differentially spliced cooh terminus in agonist-promoted receptor internalization. J Biol Chem 274:8941–8948

    PubMed  CAS  Google Scholar 

  81. Moussa O, Ashton AW, Fraig M, Garrett-Mayer E, Ghoneim MA, Halushka PV, Watson DK (2008) Novel role of thromboxane receptor β-isoform in bladder cancer pathogenesis. Cancer Res 68:4097–4104

    PubMed  CAS  Google Scholar 

  82. Sarmiento JM, Anazco CC, Campos DM, Prado GN, Navarro J, Gonzalez CB (2004) Novel down-regulatory mechanism of the surface expression of the vasopressin V2 receptor by an alternative splice receptor variant. J Biol Chem 279:47017–47023

    PubMed  CAS  Google Scholar 

  83. Vargas KJ, Sarmiento JM, Ehrenfeld P, Anazco CC, Villanueva CI, Carmona PL, Brenet M, Navarro J, Muller-Esterl W, Gonzalez CB (2009) Postnatal expression of V2 vasopressin receptor splice variants in the rat cerebellum. Differentiation 77:377–385

    Article  PubMed  CAS  Google Scholar 

  84. Dickson L, Finlayson K (2009) VPAC and PAC receptors: from ligands to function. Pharmacol Ther 121:294–316

    PubMed  CAS  Google Scholar 

  85. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365:170–175

    PubMed  CAS  Google Scholar 

  86. Grosse R, Schoneberg T, Schultz G, Gudermann T (1997) Inhibition of gonadotropin-releasing hormone receptor signalling of a splice variant of the human receptor. Mol Endocrinol 11:1305–1318

    PubMed  CAS  Google Scholar 

  87. Grammatopoulos DK, Dai Y, Randeva HS, Levine MA, Karteris E, Easton AJ, Hillhouse EW (1999) A novel spliced variant of the type 1 corticotropin-releasing hormone receptor with a deletion in the seventh transmembrane domain present in the human pregnant term myometrium and fetal membranes. Mol Endocrinol 13:2189–2202

    PubMed  CAS  Google Scholar 

  88. Grinninger C, Wang W, Oskoui KB, Voice JK, Goetzl EJ (2004) A natural variant type II G protein-coupled receptor for vasoactive intestinal peptide with altered function. J Biol Chem 279:40259–40262

    PubMed  CAS  Google Scholar 

  89. Markovic D, Grammatopoulos DK (2009) Focus on the splicing of B1-GPCRs transmembrane-domain 7. Trends Biochem Sci (in press)

  90. Nordstrom KJ, Lagerstrom MC, Waller LM, Fredriksson R, Schioth HB (2009) The secretin GPCRs descended from the family of adhesion GPCRs. Mol Biol Evol 26:71–84

    PubMed  Google Scholar 

  91. Hossami S, Findlay DM, Brady CL, Myers DE, Martin TJ, Sexton PM (1994) Isoforms of the rat calcitonin receptor: consequences for ligand binding and signal transduction. Endocrinology 135:183–190

    Google Scholar 

  92. Chen AM, Perrin MH, Digruccio MR, Vaughan JM, Brar BK, Arias CM, Lewis KA, Rivier JE, Sawchenko PE, Vale WW (2005) A soluble mouse brain splice variant of type 2alpha corticotropin-releasing factor (CRF) receptor binds ligands and modulates their activity. Proc Natl Acad Sci USA 102:2620–2625

    PubMed  CAS  Google Scholar 

  93. Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing factor receptor. Proc Natl Acad Sci USA 90:8967–8971

    PubMed  CAS  Google Scholar 

  94. Markovic D, Papadopoulou N, Teli T, Randeva H, Levine MA, Hillhouse EW, Grammatopoulos DK (2006) Differential responses of CRH receptor type 1 variants to PKC phosphorylation. J Pharmacol Exp Ther 319:1032–1042

    PubMed  CAS  Google Scholar 

  95. Teli T, Markovic D, Hewitt ME, Levine MA, Hillhouse EW, Grammatopoulos DK (2008) Structural domains determining signalling characteristics of the CRH-receptor type 1 variant R1β and response to PKC phosphorylation. Cell Signal 20:40–49

    PubMed  CAS  Google Scholar 

  96. Ross PC, Kostas CM, Ramabhadran TV (1994) A variant of the human corticotropin-releasing factor (CRF) receptor: cloning, expression and pharmacology. Biochem Biophys Res Commun 205:1836–1842

    PubMed  CAS  Google Scholar 

  97. Zmijewski MA, Slominski AT (2009) CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J Cell Physiol 218:593–602

    PubMed  CAS  Google Scholar 

  98. Markovic D, Lehnert H, Levine MA, Grammatopoulos DK (2008) Structural determinants critical for localization and signalling within the 7th transmembrane domain of the type 1 corticotropin releasing hormone receptor: lessons from the variant R1d. Mol Endocrinol 22:2505–2519

    PubMed  CAS  Google Scholar 

  99. Seck T, Pellegrini M, Florea AM, Grignoux V, Baron R, Mierke DF, Horne WC (2005) The delta-e13 isoform of the calcitonin receptor forms a six-transmembrane domain receptor with dominant-negative effects on receptor surface expression and signaling. Mol Endocrinol 19:2132–2144

    PubMed  CAS  Google Scholar 

  100. Markovic D, Punn A, Lehnert H, Grammatopoulos DK (2008) Intracellular mechanisms regulating CRH-R2β-endocytosis and interaction with ERK1/2 and p38 MAPK signalling cascades. Mol Endocrinol 22:689–6706

    PubMed  CAS  Google Scholar 

  101. Huang MC, Miller AL, Wang W, Kong Y, Paul S, Goetzl EJ (2006) Differential signaling of T cell generation of IL-4 by wild-type and short-deletion variant of type 2 G protein-coupled receptor for vasoactive intestinal peptide (VPAC2). J Immunol 176:6640–6646

    PubMed  CAS  Google Scholar 

  102. Markovic D, Vatish M, Gu M, Slater D, Newton R, Lehnert H, Grammatopoulos DK (2007) The onset of labour alters corticotropin releasing hormone type 1 receptor (CRH-R1) variant expression in human myometrium: putative role of IL-1β. Endocrinology 148:3205–3213

    PubMed  CAS  Google Scholar 

  103. Donev R, Newall A, Thome J, Sheer D (2007) A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry 12:681–690

    PubMed  CAS  Google Scholar 

  104. Dowhan DH, Hong EP, Auboeuf D, Dennis AP, Wilson MM, Berget SM, O’Malley BW (2005) Steroid hormone receptor coactivation and alternative RNA splicing by U2AF65-related proteins CAPERα and CAPERβ. Mol Cell 17:429–439

    PubMed  CAS  Google Scholar 

  105. Guivarc’h D, Vernier P, Vincent JD (1995) Sex steroid hormones change the differential distribution of the isoforms of the D2 dopamine receptor messenger RNA in the rat brain. Neuroscience 69:159–166

    PubMed  Google Scholar 

  106. Guivarc’h D, Vincent JD, Vernier P (1998) Alternative splicing of the D2 dopamine receptor messenger ribonucleic acid is modulated by activated sex steroid receptors in the MMQ prolactin cell line. Endocrinology 139:4213–4221

    PubMed  Google Scholar 

  107. Cheung TC, Hearn JP (2003) Developmental expression and subcellular localization of wallaby gonadotropin-releasing hormone receptor and its splice variants. Gen Comp Endocrinol 133:88–99

    PubMed  CAS  Google Scholar 

  108. Bjarnadottir TK, Fredrikssonn R, Schioth HB (2007) The adhesion GPCRs: a unique family of G-protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 64:2104–2119

    PubMed  CAS  Google Scholar 

  109. Yang Y, Walsh CE (2005) Spliceosome-mediated RNA trans-splicing. Mol Ther 12:1006–1012

    PubMed  CAS  Google Scholar 

  110. Nemeth ZH, Csoka B, Wilmanski J, Xu D, Lu Q, Ledent C, Deitch EA, Pacher P, Spolarics Z, Hasko G (2006) Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. J Immunol 176:5616–5626

    PubMed  CAS  Google Scholar 

  111. Ramensky V, Nurtdinov R, Neverov A, Mironov A, Gelfand M (2006) Human genome polymorphism and alternative splicing. In: Proceedings of 5th international conference on bioinformatics of genome regulation and structure (part 5): comparative and evolutionary genomics and proteomics, Novosibirsk, Russia, pp 211–213

  112. Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, Lee ML, Xiao T, Papp A, Wang D, Sadée W (2007) Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci USA 104:20552–20557

    PubMed  CAS  Google Scholar 

  113. Journot L, Spengler D, Pantaloni C, Dumuis A, Sebben M, Bockaert J (1994) The PACAP receptor: generation by alternative splicing of functional diversity among G protein-coupled receptors in nerve cells. Semin Cell Biol 5:263–272

    PubMed  CAS  Google Scholar 

  114. Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288

    PubMed  CAS  Google Scholar 

  115. Cai Z, Schools GP, Kimelberg HK (2000) Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression. Glia 29:70–80

    PubMed  CAS  Google Scholar 

  116. Hermans E, Challiss RAJ (2001) Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359:465–484

    PubMed  CAS  Google Scholar 

  117. Fackenthal JD, Godley LA (2008) Aberrant RNA splicing and its functional consequences in cancer cells. Dis Model Mech 1:37–42

    PubMed  CAS  Google Scholar 

  118. Kiaris H, Schally AV, Varga JL, Groot K, Armatis P (1999) Growth hormone-releasing hormone: an autocrine growth factor for small cell lung carcinoma. Proc Natl Acad Sci USA 96:14894–14898

    PubMed  CAS  Google Scholar 

  119. Kahan Z, Varga JL, Schally AV, Rekasi Z, Armatis P, Chatzistamou L, Czompoly T, Halmos G (2000) Antagonists of growth hormone-releasing hormone arrest the growth of MDA-MB-468 estrogen-independent human breast cancers in nude mice. Breast Cancer Res Treat 60:71–79

    PubMed  CAS  Google Scholar 

  120. Chatzistamou I, Schally AV, Varga JL, Groot K, Busto R, Armatis P, Halmos G (2001) Inhibition of growth and metastases of MDA-MB-435 human estrogen-independent breast cancers by an antagonist of growth hormone-releasing hormone. Anticancer Drugs 12:761–768

    PubMed  CAS  Google Scholar 

  121. Schally AV, Varga JL (2006) Antagonists of growth hormone-releasing hormone in oncology. Comb Chem High Throughput Screen 9:163–170

    PubMed  CAS  Google Scholar 

  122. Moussa O, Yordy JS, Abol-Enein H, Sinha D, Bissada NK, Halushka PV, Ghoneim MA, Watson DK (2005) Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer Res 65:11581–11587

    PubMed  CAS  Google Scholar 

  123. Tyson-Capper AJ (2007) Alternative splicing: an important mechanism for myometrial gene regulation that can be manipulated to target specific genes associated with preterm labour. BMC Pregnancy Childbirth 7(Suppl 1):S13

    PubMed  Google Scholar 

  124. Grammatopoulos DK (2008) Placental corticotrophin-releasing hormone and its receptors in human pregnancy and labour: still a scientific enigma. J Neuroendocrinol 20:432–438

    PubMed  CAS  Google Scholar 

  125. Korebrits C, Ramirez MM, Watson L, Brinkman E, Bocking AD, Challis JR (1998) Maternal corticotropin-releasing hormone is increased with impending preterm birth. J Clin Endocrinol Metab 83:1585–1591

    PubMed  CAS  Google Scholar 

  126. Jin D, He P, You X, Zhu X, Dai L, He Q, Liu C, Hui N, Sha J, Ni X (2007) Expression of corticotropin-releasing hormone receptor type 1 and type 2 in human pregnant myometrium. Reprod Sci 14:568–577

    PubMed  CAS  Google Scholar 

  127. Karteris E, Grammatopoulos D, Dai Y, Olah KB, Ghobara TB, Easton A, Hillhouse EW (1998) The human placenta and fetal membranes express the corticotropin-releasing hormone receptor 1α (CRH-1α) and the CRH-C variant receptor. J Clin Endocrinol Metab 83:1376–1379

    PubMed  CAS  Google Scholar 

  128. Grammatopoulos D, Dai Y, Chen J, Karteris E, Papadopoulou N, Easton AJ, Hillhouse EW (1998) Human corticotropin-releasing hormone receptor: differences in subtype expression between pregnant and non-pregnant myometria. J Clin Endocrinol Metab 83:2539–2544

    PubMed  CAS  Google Scholar 

  129. Grammatopoulos DK, Hillhouse EW (1999) Role of corticotropin-releasing hormone in onset of labour. Lancet 354:1546–1549

    PubMed  CAS  Google Scholar 

  130. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674

    PubMed  CAS  Google Scholar 

  131. Themmen APN, Huhtaniemi IT (2000) Mutations of gonadotropins and gonadotropin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr Rev 21:551–583

    PubMed  CAS  Google Scholar 

  132. Latronico AC, Arnhold IJ (2006) Inactivating mutations of LH and FSH receptors—from genotype to phenotype. Pediatr Endocrinol Rev 4:28–31

    PubMed  Google Scholar 

  133. McGillis JP, Mitsuhashi M, Payan DG (1990) Immunomodulation by tachykinin neuropeptides. Ann NY Acad Sci 594:85–94

    PubMed  CAS  Google Scholar 

  134. Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P, Makela S, Rehn M, Pirskanen A, Rautanen A, Zucchelli M, Gullsten H, Leino M, Alenius H, Petays T, Haahtela T, Laitinen A, Laprise C, Hudson TJ, Laitinen LA, Kere J (2004) Characterization of a common susceptibility locus for asthma-related traits. Science 304:300–304

    PubMed  CAS  Google Scholar 

  135. Reinscheid RK, Xu YL, Okamura N, Zeng J, Chung S, Pai R, Wang Z, Civelli O (2005) Pharmacological characterization of human and murine neuropeptide S receptor variants. J Pharmacol Exp Ther 315:1338–1345

    PubMed  CAS  Google Scholar 

  136. Allen IC, Pace AJ, Jania LA, Ledford JG, Latour AM, Snouwaert JN, Bernier V, Stocco R, Therien AG, Koller BH (2006) Expression and function of NPSR1/GPRA in the lung before and after induction of asthma-like disease. Am J Physiol 291:L1005–L1017

    Article  CAS  Google Scholar 

  137. Wu H, Romieu I, Sienra-Monge JJ, del Rio-Navarro BE, Burdett L, Yuenger J, Li H, Chanock SJ, London SJ (2008) Lack of association between genetic variation in G-protein-coupled receptor for asthma susceptibility and childhood asthma and atopy. Genes Immun 9:224–230

    PubMed  CAS  Google Scholar 

  138. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    PubMed  CAS  Google Scholar 

  139. Kuniyeda K, Okuno T, Terawaki K, Miyano M, Yokomizo T, Shimizu T (2007) Identification of the intracellular region of the leukotriene B4 receptor type 1 that is specifically involved in Gi activation. J Biol Chem 282:3998–4006

    PubMed  CAS  Google Scholar 

  140. Lee CJ, Irizarry K (2003) Alternative splicing in the nervous system: an emerging source of diversity and regulation. Biol Psychiatry 54:771–776

    PubMed  CAS  Google Scholar 

  141. Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366:381–416

    PubMed  CAS  Google Scholar 

  142. Tanowitz M, Hislop JN, von Zastrow M (2008) Alternative splicing determines the post-endocytic sorting fate of G-protein-coupled receptors. J Biol Chem 283:35614–35621

    PubMed  CAS  Google Scholar 

  143. Richtand NM (2006) Behavioral sensitization, alternative splicing, and D3 dopamine receptor-mediated inhibitory function. Neuropsychopharmacology 31:2368–2375

    PubMed  CAS  Google Scholar 

  144. Konig H, Moll J, Ponta H, Herrlich P (1996) Trans-acting factors regulate the expression of CD44 splice variants. EMBO J 15:4030–4039

    PubMed  CAS  Google Scholar 

  145. Xie J, Black DL (2001) A CaMK-IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410:936–939

    PubMed  CAS  Google Scholar 

  146. Berke JD, Sgambato V, Zhu PP, Lavoie B, Vincent M, Krause M, Hyman SE (2001) Dopamine and glutamate induce distinct striatal splice forms of Ania-6, an RNA polymerase II-associated cyclin. Neuron 32:277–287

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Drs. Carl Nelson and Gary Willars (University of Leicester) for helpful comments and suggestions on earlier drafts of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. John Challiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovic, D., Challiss, R.A.J. Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell. Mol. Life Sci. 66, 3337–3352 (2009). https://doi.org/10.1007/s00018-009-0093-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0093-4

Keywords

Navigation