Skip to main content

Advertisement

Log in

Efficient CRISPR/Cas9 nickase-mediated genome editing in an in vitro model of mucopolysaccharidosis IVA

  • Article
  • Published:
Gene Therapy Submit manuscript

Abstract

Mucopolysaccharidosis IVA (MPS IVA) is a lysosomal storage disorder (LSD) caused by mutations in gene encoding for GALNS enzyme. Lack of GALNS activity leads to the accumulation of glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate. Although enzyme replacement therapy has been approved since 2014 for MPS IVA, still there is an unmet medical need to have improved therapies for this disorder. CRISPR/Cas9-based gene therapy has been tested for several LSDs with encouraging findings, but to date it has not been assayed on MPS IVA. In this work, we validated for the first time the use of CRISPR/Cas9, using a Cas9 nickase, for the knock-in of an expression cassette containing GALNS cDNA in an in vitro model of MPS IVA. The results showed the successful homologous recombination of the expression cassette into the AAVS1 locus, as well as a long-term increase in GALNS activity reaching up to 40% of wild-type levels. We also observed normalization of lysosomal mass, total GAGs, and oxidative stress, which are some of the major findings regarding the pathophysiological events in MPS IVA. These results represent a proof-of-concept of the use of CRISPR/Cas9 nickase strategy for the development of a novel therapeutic alternative for MPS IVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Evaluation of the nCas9 double nickase-mediated cut.
Fig. 2: Molecular validation of HR and transgene expression.
Fig. 3: Long-term edition on MPS IVA fibroblast.
Fig. 4: Phenotype correction of MPS IVA biomarkers.

Similar content being viewed by others

Data availability

Data generated or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Sawamoto K, Álvarez González JV, Piechnik M, Otero FJ, Couce ML, Suzuki Y, et al. Mucopolysaccharidosis IVA: diagnosis, treatment, and management. Int J Mol Sci. 2020;21:1–26.

    Article  Google Scholar 

  2. Rivera-Colón Y, Schutsky EK, Kita AZ, Garman SC. The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A. J Mol Biol. 2012;423:736–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Çelik B, Tomatsu SC, Tomatsu S, Khan SA. Epidemiology of Mucopolysaccharidoses update. Diagnostics. 2021;11:1–37.

    Article  Google Scholar 

  4. Gómez AMG-RR, Suárez-Obando, F. Estimation of the mucopolysaccharidoses frequencies and cluster analysis in the Colombian orovinces of Cundinamarca and Boyacá. Biomedica. 2012;32:602–9.

    PubMed  Google Scholar 

  5. Sistema de Vigilancia en Salud Pública (Sivigila). Enfermedades huérfanas—raras, Colombia, periodo epidemiológico I 2021. In: Instituto Nacional de Salud, 2021. pp 1–8.

  6. Puentes-Tellez MA, Lerma-Barbosa PA, Garzon-Jaramillo RG, Suarez DA, Espejo-Mojica AJ, Guevara JM, et al. A perspective on research, diagnosis, and management of lysosomal storage disorders in Colombia. Heliyon. 2020;6:e03635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cleary M, Davison J, Gould R, Geberhiwot T, Hughes D, Mercer J, et al. Impact of long-term elosulfase alfa treatment on clinical and patient-reported outcomes in patients with mucopolysaccharidosis type IVA: results from a Managed Access Agreement in England. Orphanet J Rare Dis. 2021;16:38.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Leal AF, Espejo-Mojica AJ, Sánchez OF, Ramírez CM, Reyes LH, Cruz JC, et al. Lysosomal storage diseases: current therapies and future alternatives. J Mol Med. 2020;98:931–46.

    Article  PubMed  Google Scholar 

  9. Akyol MU, Alden TD, Amartino H, Ashworth J, Belani K, Berger KI, et al. Recommendations for the management of MPS IVA: systematic evidence- and consensus-based guidance. Orphanet J Rare Dis. 2019;14:137.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee CLCC, Chiu HC, Tu RY, Lo YT, Chang YH, Lin SP, et al. Clinical utility of elosulfase alfa in the treatment of morquio A syndrome. Drug Des Dev Ther. 2022;16:143–54.

    CAS  Google Scholar 

  11. Sawamoto K, Stapleton M, Almeciga-Diaz CJ, Espejo-Mojica AJ, Losada JC, Suarez DA, et al. Therapeutic options for mucopolysaccharidoses: current and emerging treatments. Drugs. 2019;79:1103–34.

    Article  CAS  PubMed  Google Scholar 

  12. Donida B, Marchetti DP, Jacques CED, Ribas G, Deon M, Manini P, et al. Oxidative profile exhibited by Mucopolysaccharidosis type IVA patients at diagnosis: increased keratan urinary levels. Mol Genet Metab Rep. 2017;11:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donida B, Marchetti DP, Biancini GB, Deon M, Manini PR, da Rosa HT, et al. Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy. Biochim Biophys Acta. 2015;1852:1012–9.

    Article  CAS  PubMed  Google Scholar 

  14. Schweighardt B, Tompkins T, Lau K, Jesaitis L, Qi Y, Musson DG, et al. Immunogenicity of Elosulfase Alfa, an enzyme replacement therapy in patients with Morquio A syndrome: results from MOR-004, a phase III trial. Clin Ther. 2015;37:1012–21. e6

    Article  CAS  PubMed  Google Scholar 

  15. Long B, Tompkins T, Decker C, Jesaitis L, Khan S, Slasor P, et al. Long-term immunogenicity of Elosulfase Alfa in the treatment of Morquio a syndrome: results from MOR-005, a phase III extension study. Clin Ther. 2017;39:118–29. e3

    Article  PubMed  Google Scholar 

  16. Olarte-Avellaneda S, Cepeda Del Castillo J, Rojas-Rodriguez AF, Sánchez O, Rodríguez-López A, Suárez García DA, et al. Bromocriptine as a novel pharmacological chaperone for mucopolysaccharidosis IV A. ACS Med Chem Lett. 2020;11:1377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ. Advances in the development of pharmacological chaperones for the mucopolysaccharidoses. Int J Mol Sci. 2020;21:232.

    Article  Google Scholar 

  18. Almeciga-Diaz CJ, Hidalgo OA, Olarte-Avellaneda S, Rodriguez-Lopez A, Guzman E, Garzon R, et al. Identification of ezetimibe and pranlukast as pharmacological chaperones for the treatment of the rare disease mucopolysaccharidosis type IVA. J Med Chem. 2019;62:6175–89.

    Article  CAS  PubMed  Google Scholar 

  19. Poletto E, Baldo G, Gomez-Ospina N. Genome editing for mucopolysaccharidoses. Int J Mol Sci. 2020;21:1–20.

    Article  Google Scholar 

  20. Alméciga-Diaz CJ, Barrera LA. Design and applications of gene therapy vectors for mucopolysaccharidosis in Colombia. Gene Ther. 2020;27:104–7.

    Article  PubMed  Google Scholar 

  21. Biffi A. Gene therapy for lysosomal storage disorders: a good start. Hum Mol Genet. 2016;25:R65–75.

    Article  CAS  PubMed  Google Scholar 

  22. Puentes-Tellez MA, Sánchez OF, Rojas-Rodriguez F, Benincore-Flórez E, Barbosa H, Alméciga Díaz CJ. Evaluation of HIV-1 derived lentiviral vectors as transductors of Mucopolysaccharidosis type IV a fibroblasts. Gene. 2021;780:145527.

    Article  CAS  PubMed  Google Scholar 

  23. Alméciga-Díaz CJ, Montaño AM, Barrera LA, Tomatsu S. Tailoring the AAV2 capsid vector for bone-targeting. Pediatr Res. 2018;84:545–51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gutierrez MA, Garcia-Vallejo F, Tomatsu S, Ceron F, Almeciga-Diaz CJ, Dominguez MC, et al. Construction of an adenoassociated virus-derived expression vector to correct the genetic defect in Morquio A disease. Biomedica. 2008;28:448–59.

    Article  PubMed  Google Scholar 

  25. Alméciga-Díaz C, Montaño AM, Tomatsu S, Barrera L. Adeno-associated virus gene transfer on Morquio A: effect of promoters and sulfatase-modifying factor 1. FEBS J. 2010;277:3608–19.

    Article  PubMed  Google Scholar 

  26. Sawamoto K, Karumuthil-Melethil S, Khan S, Stapleton M, Bruder JT, Danos O, et al. Liver-targeted AAV8 gene therapy ameliorates skeletal and cardiovascular pathology in a Mucopolysaccharidosis IVA murine model. Mol Ther Methods Clin Dev. 2020;18:50–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bertolin J, Sánchez V, Ribera A, Jaén ML, Garcia M, Pujol A, et al. Treatment of skeletal and non-skeletal alterations of Mucopolysaccharidosis type IVA by AAV-mediated gene therapy. Nat Commun. 2021;12:5343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia. 2018;32:1529–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology. 2017;120:63–80.

    Article  CAS  PubMed  Google Scholar 

  30. Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei-Irannejad V, Kheyrollah M, et al. CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol. 2019;234:12267–77.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang F, Doudna JA. CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29.

    Article  CAS  PubMed  Google Scholar 

  32. Chiang TW, le Sage C, Larrieu D, Demir M, Jackson SP. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep. 2016;6:24356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wilson LOW, O’Brien AR, Bauer DC. The current state and future of CRISPR-Cas9 gRNA design tools. Front Pharmacol. 2018;9:749.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schuh RS, Gonzalez EA, Tavares AMV, Seolin BG, Elias LS, Vera LNP, et al. Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Gene Ther. 2020;27:74–84.

    Article  CAS  PubMed  Google Scholar 

  35. Schuh RS, Poletto E, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, et al. In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release. 2018;288:23–33.

    Article  CAS  PubMed  Google Scholar 

  36. Schuh RS, de CTG, Giugliani R, Matte U, Baldo G, Teixeira HF. Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm. 2018;122:158–66.

    Article  CAS  PubMed  Google Scholar 

  37. Ou L, Przybilla MJ, Tăbăran AF, Overn P, O’Sullivan MG, Jiang X, et al. A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases. Gene Ther. 2020;27:226–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pachajoa H, Acosta MA, Alméciga-Díaz CJ, Ariza Y, Diaz-Ordoñez L, Caicedo-Herrera G, et al. Molecular characterization of mucopolysaccharidosis type IVA patients in the Andean region of Colombia. Am J Med Genet C Semin Med Genet. 2021;187:388–95.

    Article  CAS  PubMed  Google Scholar 

  39. Uniyal AP, Mansotra K, Yadav SK, Kumar V. An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. 3 Biotech. 2019;9:223.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tomatsu S, Montano AM, Gutierrez M, Grubb JH, Oikawa H, Dung VC, et al. Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase. Mol Genet Metab. 2007;91:69–78.

    Article  CAS  PubMed  Google Scholar 

  41. Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42:e168.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aranda PS, LaJoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis. 2012;33:366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Diggelen OP, Zhao H, Kleijer WJ, Janse HC, Poorthuis BJ, van Pelt J, et al. A fluorimetric enzyme assay for the diagnosis of Morquio disease type A (MPS IV A). Clin Chim Acta. 1990;187:131–9.

    Article  PubMed  Google Scholar 

  44. de Carvalho TG, Schuh R, Pasqualim G, Pellenz FM, Filippi-Chiela EC, Giugliani R, et al. CRISPR-Cas9-mediated gene editing in human MPS I fibroblasts. Gene. 2018;678:33–37.

    Article  PubMed  Google Scholar 

  45. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee YW, Cherng YG, Yang ST, Liu SH, Chen TL, Chen RM. Hypoxia induced by cobalt chloride triggers autophagic apoptosis of human and mouse drug-resistant glioblastoma cells through targeting the PI3K-AKT-mTOR signaling pathway. Oxid Med Cell Longev. 2021;2021:5558618.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019;39:556–70.

    Article  PubMed  Google Scholar 

  48. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359:1–10.

    Article  Google Scholar 

  49. Fujitsuka H, Sawamoto K, Peracha H, Mason RW, Mackenzie W, Kobayashi H, et al. Biomarkers in patients with mucopolysaccharidosis type II and IV. Mol Genet Metab Rep. 2019;19:100455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leal AF, Espejo-Mojica AJ, Alméciga-Díaz CJ. Genome editing on GM2 gangliosidoses fibroblasts using CRISPR/nCas9. Mol Genet Metab. 2022;135:S72.

    Google Scholar 

  51. Jones J, Nivitchanyong T, Giblin C, Ciccarone V, Judd D, Gorfien S, et al. Optimization of tetracycline-responsive recombinant protein production and effect on cell growth and ER stress in mammalian cells. Biotechnol Bioeng. 2005;91:722–32.

    Article  CAS  PubMed  Google Scholar 

  52. Tossolini I, Gugliotta A, López Díaz F, Kratje R, Prieto C. Screening of CHO-K1 endogenous promoters for expressing recombinant proteins in mammalian cell cultures. Plasmid. 2022;119-120:102620.

    Article  CAS  PubMed  Google Scholar 

  53. Borkham-Kamphorst E, Steffen BT, Van de Leur E, Haas U, Tihaa L, Friedman SL, et al. CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis. Cell Signal. 2016;28:34–42.

    Article  CAS  PubMed  Google Scholar 

  54. Chen BD, He CH, Chen XC, Pan S, Liu F, Ma X, et al. Targeting transgene to the heart and liver with AAV9 by different promoters. Clin Exp Pharmacol Physiol. 2015;42:1108–17.

    Article  CAS  PubMed  Google Scholar 

  55. Conlon TJ, Erger K, Porvasnik S, Cossette T, Roberts C, Combee L, et al. Preclinical toxicology and biodistribution studies of recombinant adeno-associated virus 1 human acid alpha-glucosidase. Hum Gene Ther Clin Dev. 2013;24:127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen Q, Zhai H, Li X, Ma Y, Chen B, Liu F, et al. Recombinant adeno-associated virus serotype 9 in a mouse model of atherosclerosis: Determination of the optimal expression time in vivo. Mol Med Rep. 2017;15:2090–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Geng L, Gao Y, Chen X, Hou S, Zhan CG, Radic Z, et al. Gene transfer of mutant mouse cholinesterase provides high lifetime expression and reduced cocaine responses with no evident toxicity. PLoS One. 2013;8:e67446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schuh RS, Bidone J, Poletto E, Pinheiro CV, Pasqualim G, de Carvalho TG, et al. Nasal administration of cationic nanoemulsions as nucleic acids delivery systems aiming at mucopolysaccharidosis type I gene therapy. Pharm Res. 2018;35:221.

    Article  PubMed  Google Scholar 

  59. Rintz E, Higuchi T, Kobayashi H, Galileo DS, Wegrzyn G, Tomatsu S. Promoter considerations in the design of lentiviral vectors for use in treating lysosomal storage diseases. Mol Ther Methods Clin Dev. 2022;24:71–87.

    Article  CAS  PubMed  Google Scholar 

  60. Alméciga-Díaz CJ, Montaño AM, Tomatsu S, Barrera LA. Adeno-associated virus gene transfer in Morquio A disease—effect of promoters and sulfatase-modifying factor 1. FEBS J. 2010;277:3608–19.

    Article  PubMed  Google Scholar 

  61. Alméciga-Díaz C, Rueda-Paramo M, Espejo A, Echeverri O, Montaño A, Tomatsu S, et al. Effect of Elongation Factor 1α promoter and SUMF1 over in-vitro expression of N-acetylgalactosamine-6-sulfate sulfatase. Mol Biol Rep. 2009;36:1863–70.

    Article  PubMed  Google Scholar 

  62. Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M. Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. 2017;7:2095.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ge XA, Hunter CP. Efficient homologous recombination in mice using long single stranded DNA and CRISPR Cas9 nickase. G3. 2019;9:281–6.

    Article  CAS  PubMed  Google Scholar 

  64. Rong Z, Zhu S, Xu Y, Fu X. Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. 2014;5:258–60.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Christensen CL, Ashmead RE, Choy FYM. Cell and gene therapies for mucopolysaccharidoses: base editing and therapeutic delivery to the CNS. Diseases. 2019;7:1–27.

    Article  Google Scholar 

  66. Morrone A, Tylee KL, Al-Sayed M, Brusius-Facchin AC, Caciotti A, Church HJ, et al. Molecular testing of 163 patients with Morquio A (Mucopolysaccharidosis IVA) identifies 39 novel GALNS mutations. Mol Genet Metab. 2014;112:160–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Khan S, Alméciga-Díaz CJ, Sawamoto K, Mackenzie WG, Theroux MC, Pizarro C, et al. Mucopolysaccharidosis IVA and glycosaminoglycans. Mol Genet Metab. 2017;120:78–95.

    Article  CAS  PubMed  Google Scholar 

  68. Zanetti A, D’Avanzo F, AlSayed M, Brusius-Facchin AC, Chien YH, Giugliani R, et al. Molecular basis of mucopolysaccharidosis IVA (Morquio A syndrome): a review and classification of GALNS gene variants and reporting of 68 novel variants. Hum Mutat. 2021;42:1384–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nakashima Y, Tomatsu S, Hori T, Fukuda S, Sukegawa K, Kondo N, et al. Mucopolysaccharidosis IV A: molecular cloning of the human N-acetylgalactosamine-6-sulfatase gene (GALNS) and analysis of the 5’-flanking region. Genomics. 1994;20:99–104.

    Article  CAS  PubMed  Google Scholar 

  70. Giraldo KA, Bermudez JS, Torres CE, Reyes LH, Osma JF, Cruz JC. Microfluidics for multiphase mixing and liposomal encapsulation of nanobioconjugates: passive vs. acoustic systems. Fluids. 2021;6:309.

    Article  CAS  Google Scholar 

  71. Lopez-Barbosa N, Suarez-Arnedo A, Cifuentes J, Gonzalez BAF, Silvera BCA, Osma JF, et al. Magnetite-OmpA nanobioconjugates as cell-penetrating vehicles with endosomal escape abilities. ACS Biomater Sci Eng. 2020;6:415–24.

    Article  CAS  PubMed  Google Scholar 

  72. Aranguren A, Torres CE, Muñoz-Camargo C, Osma JF, Cruz JC. Synthesis of nanoscale liposomes via low-cost microfluidic systems. Micromachines. 2020;11:1050.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paola Lasso and the Biomedics Science Unit, at the Faculty of Science at Pontificia Universidad Javeriana, for their assistance during flow cytometry experiments.

Funding

CJAD was suppoted by Ministerio de Ciencia, Tecnología e Innovación, Colombia (Contract 120380763212, ID 8352), Pontificia Universidad Javeriana (ID 20289), and the National MPS Society (ID 9509). AFL recived doctoral scholarship from Pontificia Universidad Javeriana and was supported by Suministros Clínicos ISLA S.A.S.

Author information

Authors and Affiliations

Authors

Contributions

AFL was responsible for conducting the search, extracting and analyzing data, and interpreting results. CJAD contributed to experiments planning, data analysis and interpretation, and provided feedback.

Corresponding author

Correspondence to Carlos Javier Alméciga-Díaz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This project was approved by the Research and Ethics Committee of the Faculty of Science at Pontificia Universidad Javeriana.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, A.F., Alméciga-Díaz, C.J. Efficient CRISPR/Cas9 nickase-mediated genome editing in an in vitro model of mucopolysaccharidosis IVA. Gene Ther 30, 107–114 (2023). https://doi.org/10.1038/s41434-022-00344-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00344-3

  • Springer Nature Limited

This article is cited by

Navigation