Skip to main content

Advertisement

Log in

Effect of elongation factor 1α promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Morquio A is an autosomal recessive disease caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS), leading to the lysosomal accumulation of keratan-sulfate and chondroitin-6-sulfate. We evaluated in HEK293 cells the effect of the cytomegalovirus immediate early enhancer/promoter (CMV) or the elongation factor 1α (EF1α) promoters, and the coexpression with the sulfatase modifying factor 1 (SUMF1) on GALNS activity. Four days postransfection GALNS activity in transfected cells with CMV-pIRES-GALNS reached a plateau, whereas in cells transfected with EF1α-pIRES-GALNS continued to increase until day 8. Co-transfection with pCXN-SUMF1 showed an increment up to 2.6-fold in GALNS activity. Finally, computational analysis of transcription factor binding-sites and CpG islands showed that EF1α promoter has long CpG islands and high-density binding-sites for Sp1 compared to CMV. These results show the advantage of the SUMF1 coexpression on GALNS activity and indicate a considerable effect on the expression stability using EF1α promoter compared to CMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neufeld E, Muenzer J (2001) The mucopolysaccharidosis. In: Scriver C, Beaudet A, Sly W et al (eds) The metabolic and molecular bases of inherited diseases, vol III. McGraw-Hill, New York, pp 3421–3452

    Google Scholar 

  2. Montaño AM, Tomatsu S, Gottesman G et al (2007) International Morquio A registry: clinical manifestation and natural course of Morquio A disease. J Inherit Metab Dis 30:165–174

    Article  PubMed  Google Scholar 

  3. Ashworth JL, Biswas S, Wraith E et al (2006) Mucopolysaccharidoses and the eye. Surv Ophthalmol 51:1–17

    Article  PubMed  Google Scholar 

  4. Vellodi A, Young EP, Cooper A et al (1997) Bone marrow transplantation for mucopolysaccharidosis type I: experience of two British centres. Arch Dis Child 76:92–99

    Article  PubMed  CAS  Google Scholar 

  5. Tomatsu S, Montaño A, Ohashi A et al (2007) Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum Mol Genet 17:815–824

    Article  PubMed  CAS  Google Scholar 

  6. Tomatsu S, Fukuda M, Masue K et al (1991) Morquio disease: isolation, characterization and expression of full-length cDNA for human N-acetylgalactosamine-6-sulfate sulfatase. Biochem Biophys Res Commun 181:677–683

    Article  PubMed  CAS  Google Scholar 

  7. Bielicki J, Fuller M, Guo X et al (1995) Expression, purification and characterization of recombinant human N-acetylgalactosamine-6-sulphatase. Biochem J 311:333–339

    PubMed  CAS  Google Scholar 

  8. Tomatsu S, Montaño A, Gutiérrez M et al (2007) Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase. Mol Genet Metab 91:69–78

    Article  PubMed  CAS  Google Scholar 

  9. Cosma M, Pepe P, Annunziata I et al (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113:445–456

    Article  PubMed  CAS  Google Scholar 

  10. Landgrebe J, Dierks T, Schamidt B et al (2003) The human SUMF1 gene required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. Gene 316:47–56

    Article  PubMed  CAS  Google Scholar 

  11. Tomatsu S, Montaño A, Nishioka T et al (2005) Mutation and polymorphism spectrum of the GALNS gene in mucopolysaccharidosis IVA (Morquio A). Hum Mutat 26:500–512

    Article  PubMed  CAS  Google Scholar 

  12. Fraldi A, Biffi A, Lombarda A et al (2007) SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochem J 403:305–312

    Article  PubMed  CAS  Google Scholar 

  13. Fraldi A, Hemsley H, Crawley A et al (2007) Functional correction of CNS lesions in MPS-IIIA mouse model by intracerebral AAV-mediated delivery of sulfamidase and SUMF1 genes. Hum Mol Genet 16:2693–2702

    Article  PubMed  CAS  Google Scholar 

  14. Takakusaki T, Hisayasu S, Hirai Y et al (2005) Coexpression of formylglycine-generating enzyme is essential for synthesis and secretion of functional arylsulfatase A in a mouse model of metachromatic leukodystrophy. Hum Gene Ther 16:929–936

    Article  PubMed  CAS  Google Scholar 

  15. Cheng S, Smith A (2003) Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Ther 10:1275–1281

    Article  PubMed  CAS  Google Scholar 

  16. Ellinwood M, Vite C, Haskins M (2004) Gene therapy for lysosomal storage diseases: the lessons and promise of animal models. J Gene Med 6:481–506

    Article  PubMed  CAS  Google Scholar 

  17. Hodges BL, Cheng SH (2006) Cell and gene-based therapies for the lysosomal storage diseases. Curr Gene Ther 6:227–241

    Article  PubMed  CAS  Google Scholar 

  18. Ponder KP, Melniczek JR, Xu L et al (2002) Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs. Proc Natl Acad Sci USA 99:13102–13107

    Article  PubMed  CAS  Google Scholar 

  19. Sferra T, Backstrom K, Wang C et al (2004) Widespread correction of lysosomal storage following intrahepatic injection of a recombinant adeno-associated virus in the adult MPS VII mouse. Mol Ther 10:478–491

    Article  PubMed  CAS  Google Scholar 

  20. Traas AM, Wang P, Ma X et al (2007) Correction of clinical manifestations of canine mucopolysaccharidosis I with neonatal retroviral vector gene therapy. Mol Ther 15:1423–1431

    Article  PubMed  CAS  Google Scholar 

  21. Papadakis E, Nicklin S, Baker A et al (2004) Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 4:89–113

    Article  PubMed  CAS  Google Scholar 

  22. Collas P (1998) Modulation of plasmid DNA methylation and expression in zebrafish embryons. Nucleic Acids Res 26:4454–4461

    Article  PubMed  CAS  Google Scholar 

  23. Toniatti C, Bujard H, Cortese R et al (2004) Gene therapy progress and prospects: transcription regulatory systems. Gene Ther 11:649–657

    Article  PubMed  CAS  Google Scholar 

  24. Hyun-Jeong H, Eun-Sook P, Seongman K et al (2004) Long-term enzymatic and phenotypic correction in the phenylcetonuria mouse model by adeno-associated virus vector-mediated gene transfer. Pediatr Res 56:278–284

    Article  Google Scholar 

  25. Jung S, Han I, Limave A et al (2001) Adeno-associated viral vector-mediated gene transfer results in long-term enzymatic and functional correction in multiple organs of Fabry mice. Proc Natl Acad Sci USA 98:2676–2681

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Xu L, Henning A et al (2005) Liver-directed neonatal gene therapy prevents cardiac, bone, ear, and eye disease in mucopolysaccharidosis I mice. Mol Ther 11:35–47

    Article  PubMed  CAS  Google Scholar 

  27. Mount J, Herzog R, Tillson M (2002) Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-direct gene therapy. Blood 99:2670–2675

    Article  PubMed  CAS  Google Scholar 

  28. Nakai H, Herzog R, Hagstrom J et al (1998) Adeno-associated viral vector-mediated gene transfer of human blood coagulation factor IX into mouse liver. Blood 91:4600–4607

    PubMed  CAS  Google Scholar 

  29. Smale S (2001) Core promoters: active contributors to combinatorial gene regulation. Genes Dev 15:2503–2508

    Article  PubMed  CAS  Google Scholar 

  30. Mcleod D, Chariton J, Mullins J et al (1994) Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev 8:2282–2292

    Article  Google Scholar 

  31. Butler J, Kodonaga J (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev 16:2583–2592

    Article  PubMed  CAS  Google Scholar 

  32. Brandeis M, Frank D, Keshet I et al (1994) Sp1 elements protect a CpG island from de novo methylation. Nature 371:435–438

    Article  PubMed  CAS  Google Scholar 

  33. Barrera L (2003) Desarrollo de un modelo de vectores usando virus adenoasociados libre de adenovirus para corregir la deficiencia enzimática en las mucopolisacaridosis. In: Leimpn S (ed) Congreso de Errores innatos del Metabolismo y Pesquisa Neonatal, Abstracts, Iguazú, Argentina, p 32

  34. Aubin R, Weinfeild M, Paterson M (1991) Preparation of recombinant plasmid DNA for DNA-mediated gene transfer. In: Murray EJ (ed) Methods in molecular biology: gene transfer and expression protocols, vol 7, 1st edn. The Humana Press, Clifton, pp 3–13

    Google Scholar 

  35. Okoyama H, Chen C (1991) Calcium phosphate mediated gene transfer into established cell lines. In: Murray EJ (ed) Methods in molecular biology: gene transfer and expression protocols, vol 7, 1st edn. The Humana Press, Clifton, pp 15–20

    Google Scholar 

  36. vanDiggelen O, Zhao H, Kleijer W et al (1993) A fluorometric enzyme assay for the diagnosis of Morquio type A. Clin Chem Acta 187:131–140

    Article  Google Scholar 

  37. Matys V, Kel-Margoulis O, Fricke E et al (2006) TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34:D108–D110

    Article  PubMed  CAS  Google Scholar 

  38. Nakashima Y, Tomatsu S, Hori T et al (1994) Mucopolysaccharidosis IV A: molecular cloning of the human N-acetylgalactosamine-6-sulfatase gene (GALNS) and analysis of the 5′-flanking region. Genomics 20:99–104

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Xie J, Lu H et al (2007) Existence of transient functional double-stranded DNA intermediates during recombinant AAV transduction. Proc Natl Acad Sci USA 104:13104–13109

    Article  PubMed  CAS  Google Scholar 

  40. Timpe J, Bevington J, Casper J et al (2005) Mechanisms of adeno-associated virus genome encapsidation. Curr Gene Ther 5:273–284

    Article  PubMed  CAS  Google Scholar 

  41. Brooks A, Harkins R, Wang P et al (2004) Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 6:395–404

    Article  PubMed  CAS  Google Scholar 

  42. Kim I, Józkowicz A, Piedra P (2001) Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci USA 98:13282–13287

    Article  PubMed  CAS  Google Scholar 

  43. Roeser D, Preusser-Kunze A, Scgmidt B et al (2006) A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA 103:81–86

    Article  PubMed  CAS  Google Scholar 

  44. Tomatsu S, Gutierrez M, Nishioka T et al (2005) Development of MPS IVA mouse (Galnstm(hC79S.mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Hum Mol Genet 14:3321–3335

    Article  PubMed  CAS  Google Scholar 

  45. Tomatsu S, Montano A, Lopez P et al (2006) Determinant factors of spectrum of missense variants in mucopolysaccharidosis IVA gene. Mol Genet Metab 89:139–149

    Article  PubMed  CAS  Google Scholar 

  46. Ogawa R, Kagiya G, Kodaki T et al (2007) Construction of strong mammalian promoters by random cis-acting element elongation. Biotechniques 42:628–632

    Article  PubMed  CAS  Google Scholar 

  47. Sandelin A, Carninci P, Lenhard B et al (2007) Mammalian RNA polymerase II core promoters: insights from genome-wide studies. Nat Rev Genet 8:424–436

    Article  PubMed  CAS  Google Scholar 

  48. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Pontificia Universidad Javeriana’s Genomic Initiative (ID 000950). CJAD received a scholarship from Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología—COLCIENCIAS. We would like to thank Johanna Luna and Rocio Cuaspa for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Barrera.

Additional information

Carlos J. Alméciga-Díaz and Maria A. Rueda-Paramo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alméciga-Díaz, C.J., Rueda-Paramo, M.A., Espejo, A.J. et al. Effect of elongation factor 1α promoter and SUMF1 over in vitro expression of N-acetylgalactosamine-6-sulfate sulfatase. Mol Biol Rep 36, 1863–1870 (2009). https://doi.org/10.1007/s11033-008-9392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9392-3

Keywords

Navigation