Skip to main content

Advertisement

Log in

Lysosomal storage diseases: current therapies and future alternatives

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Lysosomal storage disorders (LSDs) are a group of monogenic diseases characterized by progressive accumulation of undegraded substrates into the lysosome, due to mutations in genes that encode for proteins involved in normal lysosomal function. In recent years, several approaches have been explored to find effective and successful therapies, including enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, hematopoietic stem cell transplantation, and gene therapy. In the case of gene therapy, genome editing technologies have opened new horizons to accelerate the development of novel treatment alternatives for LSD patients. In this review, we discuss the current therapies for this group of disorders and present a detailed description of major genome editing technologies, as well as the most recent advances in the treatment of LSDs. We will further highlight the challenges and current bioethical debates of genome editing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parenti G, Andria G, Ballabio A (2015) Lysosomal storage diseases: from pathophysiology to therapy. Annu Rev Med 66:471–486

    Article  CAS  PubMed  Google Scholar 

  2. Marques ARA, Saftig P (2019) Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases. J Cell Sci 132(2)

  3. Sun A (2018) Lysosomal storage disease overview. Ann Transl Med 6(24):476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kingma SD, Bodamer OA, Wijburg FA (2015) Epidemiology and diagnosis of lysosomal storage disorders; challenges of screening. Best practice & research. Clin Endocrinol Metab 29(2):145–157

    Google Scholar 

  5. Desnick R, Schuchman E (2012) Enzyme replacement therapy for lysosomal diseases: lessons from 20 years of experience and remaining challenges. Annu Rev Genomics Hum Genet 13:307–335

    Article  CAS  PubMed  Google Scholar 

  6. Sawamoto K, Chen HH, Alméciga-Díaz CJ, Mason RW, Tomatsu S (2018) Gene therapy for Mucopolysaccharidoses. Mol Genet Metab 123(2):59–68

    Article  CAS  PubMed  Google Scholar 

  7. Pereira DM, Valentao P, Andrade PB (2018) Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Chem Sci 9(7):1740–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sawamoto K, Stapleton M, Alméciga-Díaz CJ, Espejo-Mojica AJ, Losada JC, Suarez DA, Tomatsu S (2019) Therapeutic options for Mucopolysaccharidoses: current and emerging treatments. Drugs 79(10):1103–1134

    Article  CAS  PubMed  Google Scholar 

  9. Parenti G, Moracci M, Fecarotta S, Andria G (2014) Pharmacological chaperone therapy for lysosomal storage diseases. Future Med Chem 6(9):1031–1045

    Article  CAS  PubMed  Google Scholar 

  10. DeDuve C (1964) From cytases to lysosomes. Fed Proc 23(1):1045–1049

    CAS  PubMed  Google Scholar 

  11. Fratantoni JC, Hall CW, Neufeld EF (1968) Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science 162(3853):570–572

    Article  CAS  PubMed  Google Scholar 

  12. Weinreb NJ, Charrow J, Andersson HC, Kaplan P, Kolodny EH, Mistry P, Pastores G, Rosenbloom BE, Scott CR, Wappner RS, Zimran A (2002) Effectiveness of enzyme replacement therapy in 1028 patients with type 1 Gaucher disease after 2 to 5 years of treatment: a report from the Gaucher Registry. Am J Med 113(2):112–119

    Article  CAS  PubMed  Google Scholar 

  13. Eng CM, Guffon N, Wilcox WR, Germain DP, Lee P, Waldek S, Caplan L, Linthorst GE, Desnick RJ, International Collaborative Fabry Disease Study Group (2001) Safety and efficacy of recombinant human alpha-galactosidase A replacement therapy in Fabry’s disease. N Engl J Med 345(1):9–16

    Article  CAS  PubMed  Google Scholar 

  14. Ioannou YA, Zeidner KM, Gordon RE, Desnick RJ (2001) Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice. Am J Hum Genet 68(1):14–25

    Article  CAS  PubMed  Google Scholar 

  15. Richards SM, Olson TA, McPherson JM (1993) Antibody response in patients with Gaucher disease after repeated infusion with macrophage-targeted glucocerebrosidase. Blood 82(5):1402–1409

    Article  CAS  PubMed  Google Scholar 

  16. Schiffmann R, Kopp JB, Austin III HA, Sabnis S, Moore DF, Weibel T, Balow JE, Brady RO (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285(21):2743–2749

    Article  CAS  PubMed  Google Scholar 

  17. Parker H, Bigger BW (2019) The role of innate immunity in mucopolysaccharide diseases. J Neurochem 148(5):639–651

    CAS  PubMed  Google Scholar 

  18. Ogawa Y, Sano T, Irisa M, Kodama T, Saito T, Furusawa E, Kaizu K, Yanagi Y, Tsukimura T, Togawa T, Yamanaka S, Itoh K, Sakuraba H, Oishi K (2017) FcRγ-dependent immune activation initiates astrogliosis during the asymptomatic phase of Sandhoff disease model mice. Sci Rep 7:40518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Arfi A, Richard M, Gandolphe C, Bonnefont-Rousselot D, Thérond P, Scherman D (2011) Neuroinflammatory and oxidative stress phenomena in MPS IIIA mouse model: the positive effect of long-term aspirin treatment. Mol Genet Metab 103(1):18–25

    Article  CAS  PubMed  Google Scholar 

  20. Martins C, Hůlková H, Dridi L, Dormoy-Raclet V, Grigoryeva L, Choi Y, Langford-Smith A, Wilkinson FL, Ohmi K, DiCristo G, Hamel E, Ausseil J, Cheillan D, Moreau A, Svobodová E, Hájková Z, Tesařová M, Hansíková H, Bigger BW, Hrebícek M, Pshezhetsky AV (2015) Neuroinflammation, mitochondrial defects and neurodegeneration in mucopolysaccharidosis III type C mouse model. Brain 138(Pt 2):336–355

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goodall KJ, Poon IKH, Phipps S, Hulett MD (2014) Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One 9(10):e109596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Donida B, Marchetti DP, Biancini GB, Deon M, Manini PR, da Rosa HT, Moura DJ, Saffi J, Bender F, Burin MG, Coitinho AS, Giugliani R, Vargas CR (2015) Oxidative stress and inflammation in mucopolysaccharidosis type IVA patients treated with enzyme replacement therapy. Biochim Biophys Acta 1852(5):1012–1019

    Article  CAS  PubMed  Google Scholar 

  23. Schuchman EH, Ge Y, Lai A, Borisov Y, Faillace M, Eliyahu E, He X, Iatridis J, Vlassara H, Striker G, Simonaro CM (2013) Pentosan polysulfate: a novel therapy for the mucopolysaccharidoses. PLoS One 8(1):e54459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simonaro CM, Tomatsu S, Sikora T, Kubaski F, Frohbergh M, Guevara JM, Wang RY, Vera M, Kang JL, Smith LJ, Schuchman EH, Haskins ME (2016) Pentosan polysulfate: oral versus subcutaneous injection in mucopolysaccharidosis type I dogs. PLoS One 11(4):e0153136

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eliyahu E, Wolfson T, Ge Y, Jepsen KJ, Schuchman EH, Simonaro CM (2011) Anti-TNF-alpha therapy enhances the effects of enzyme replacement therapy in rats with mucopolysaccharidosis type VI. PLoS One 6(8):e22447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simonaro CM, Ge Y, Eliyahu E, He X, Jepsen KJ, Schuchman EH (2010) Involvement of the Toll-like receptor 4 pathway and use of TNF-alpha antagonists for treatment of the mucopolysaccharidoses. Proc Natl Acad Sci U S A 107(1):222–227

    Article  CAS  PubMed  Google Scholar 

  27. Platt FM, Jeyakumar M (2008) Substrate reduction therapy. Acta Paediatr 97(457):88–93

    Article  PubMed  Google Scholar 

  28. Platt FM et al (1994) N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 269(11):8362–8365

    Article  CAS  PubMed  Google Scholar 

  29. Abe A et al (1995) Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res 36(3):611–621

    Article  CAS  PubMed  Google Scholar 

  30. Marshall J, Ashe KM, Bangari D, McEachern KA, Chuang WL, Pacheco J, Copeland DP, Desnick RJ, Shayman JA, Scheule RK, Cheng SH (2010) Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease. PLoS One 5(11):e15033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Marshall J, McEachern KA, Chuang WL, Hutto E, Siegel CS, Shayman JA, Grabowski GA, Scheule RK, Copeland DP, Cheng SH (2010) Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy. J Inherit Metab Dis 33(3):281–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cox TM, Drelichman G, Cravo R, Balwani M, Burrow TA, Martins AM, Lukina E, Rosenbloom B, Ross L, Angell J, Puga AC (2015) Eliglustat compared with imiglucerase in patients with Gaucher’s disease type 1 stabilised on enzyme replacement therapy: a phase 3, randomised, open-label, non-inferiority trial. Lancet 385(9985):2355–2362

    Article  CAS  PubMed  Google Scholar 

  33. Mistry PK, Lukina E, Ben Turkia H, Shankar SP, Baris H, Ghosn M, Mehta A, Packman S, Pastores G, Petakov M, Assouline S, Balwani M, Danda S, Hadjiev E, Ortega A, Gaemers SJM, Tayag R, Peterschmitt MJ (2017) Outcomes after 18 months of eliglustat therapy in treatment-naïve adults with Gaucher disease type 1: the phase 3 ENGAGE trial. Am J Hematol 92(11):1170–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mistry PK, Lukina E, Ben Turkia H, Amato D, Baris H, Dasouki M, Ghosn M, Mehta A, Packman S, Pastores G, Petakov M, Assouline S, Balwani M, Danda S, Hadjiev E, Ortega A, Shankar S, Solano MH, Ross L, Angell J, Peterschmitt MJ (2015) Effect of oral eliglustat on splenomegaly in patients with Gaucher disease type 1: the ENGAGE randomized clinical trial. JAMA 313(7):695–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lukina E, Watman N, Arreguin EA, Dragosky M, Iastrebner M, Rosenbaum H, Phillips M, Pastores GM, Kamath RS, Rosenthal DI, Kaper M, Singh T, Puga AC, Peterschmitt MJ (2010) Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: 2-year results of a phase 2 study. Blood 116(20):4095–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schiffmann R, FitzGibbon EJ, Harris C, DeVile C, Davies EH, Abel L, van Schaik IN, Benko WS, Timmons M, Ries M, Vellodi A (2008) Randomized, controlled trial of miglustat in Gaucher’s disease type 3. Ann Neurol 64(5):514–522

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cox TM, Platt FM, Aerts J (2007) Chapter 13: Medicinal use of iminosugars. Iminosugars: from synthesis to therapeutic application. Wiley

  38. Maegawa GH et al (2009) Substrate reduction therapy in juvenile GM2 gangliosidosis. Mol Genet Metab 98(1-2):215–224

    Article  CAS  PubMed  Google Scholar 

  39. Wraith JE, Vecchio D, Jacklin E, Abel L, Chadha-Boreham H, Luzy C, Giorgino R, Patterson MC (2010) Miglustat in adult and juvenile patients with Niemann-Pick disease type C: long-term data from a clinical trial. Mol Genet Metab 99(4):351–357

    Article  CAS  PubMed  Google Scholar 

  40. Calias P (2017) 2-Hydroxypropyl-β-cyclodextrins and the Blood-Brain Barrier: Considerations for Niemann-Pick Disease Type C1. Curr Pharm Des 23(40):6231–6238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. López CA, de Vries AH, Marrink SJ (2011) Molecular mechanism of cyclodextrin mediated cholesterol extraction. PLoS Comput Biol 7(3):e1002020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Sawamoto K, Tomatsu S (2019) Development of substrate degradation enzyme therapy for mucopolysaccharidosis IVA murine model. Int J Mol Sci 20(17)

  43. Gomes CM (2012) Protein misfolding in disease and small molecule therapies. Curr Top Med Chem 12(22):2460–2469

    Article  CAS  PubMed  Google Scholar 

  44. Tao YX, Conn PM (2018) Pharmacoperones as novel therapeutics for diverse protein conformational diseases. Physiol Rev 98(2):697–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Valenzano KJ, Khanna R, Powe AC Jr, Boyd R, Lee G, Flanagan JJ, Benjamin ER (2011) Identification and characterization of pharmacological chaperones to correct enzyme deficiencies in lysosomal storage disorders. Assay Drug Dev Technol 9(3):213–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hughes DA, Nicholls K, Shankar SP, Sunder-Plassmann G, Koeller D, Nedd K, Vockley G, Hamazaki T, Lachmann R, Ohashi T, Olivotto I, Sakai N, Deegan P, Dimmock D, Eyskens F, Germain DP, Goker-Alpan O, Hachulla E, Jovanovic A, Lourenco CM, Narita I, Thomas M, Wilcox WR, Bichet DG, Schiffmann R, Ludington E, Viereck C, Kirk J, Yu J, Johnson F, Boudes P, Benjamin ER, Lockhart DJ, Barlow C, Skuban N, Castelli JP, Barth J, Feldt-Rasmussen U (2017) Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J Med Genet 54(4):288–296

    Article  CAS  PubMed  Google Scholar 

  47. Boyd R et al (2013) Pharmacological chaperones as therapeutics for lysosomal storage diseases. J Med Chem 56(7):2705–2725

    Article  CAS  PubMed  Google Scholar 

  48. Parenti G, Andria G, Valenzano KJ (2015) Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther 23(7):1138–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Front S, Biela-Banaś A, Burda P, Ballhausen D, Higaki K, Caciotti A, Morrone A, Charollais-Thoenig J, Gallienne E, Demotz S, Martin OR (2017) (5aR)-5a-C-Pentyl-4-epi-isofagomine: a powerful inhibitor of lysosomal beta-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. Eur J Med Chem 126:160–170

    Article  CAS  PubMed  Google Scholar 

  50. Alméciga-Diaz CJ, Hidalgo OA, Olarte-Avellaneda S, Rodríguez-López A, Guzman E, Garzón R, Pimentel-Vera LN, Puentes-Tellez MA, Rojas-Rodriguez AF, Gorshkov K, Li R, Zheng W (2019) Identification of ezetimibe and pranlukast as pharmacological chaperones for the treatment of the rare disease mucopolysaccharidosis type IVA. J Med Chem 62(13):6175–6189

    Article  PubMed  CAS  Google Scholar 

  51. Losada Díaz JC, Cepeda del Castillo J, Rodriguez-López EA, Alméciga-Díaz CJ (2019) Advances in the development of pharmacological chaperones for the mucopolysaccharidoses. Int J Mol Sci 21(1):232

    Article  PubMed Central  CAS  Google Scholar 

  52. Matsuda J, Suzuki O, Oshima A, Yamamoto Y, Noguchi A, Takimoto K, Itoh M, Matsuzaki Y, Yasuda Y, Ogawa S, Sakata Y, Nanba E, Higaki K, Ogawa Y, Tominaga L, Ohno K, Iwasaki H, Watanabe H, Brady RO, Suzuki Y (2003) Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci U S A 100(26):15912–15917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pedemonte N, Lukacs GL, du K, Caci E, Zegarra-Moran O, Galietta LJ, Verkman AS (2005) Small-molecule correctors of defective ΔF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest 115(9):2564–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun W, Zheng W, Simeonov A (2017) Drug discovery and development for rare genetic disorders. Am J Med Genet A 173:2307–2322

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eapen M, Rocha V (2008) Principles and analysis of hematopoietic stem cell transplantation outcomes: the physician’s perspective. Lifetime Data Anal 14(4):379–388

    Article  PubMed  Google Scholar 

  56. Prasad VK, Kurtzberg J (2010) Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions. Br J Haematol 148(3):356–372

    Article  PubMed  Google Scholar 

  57. Boelens JJ (2006) Trends in haematopoietic cell transplantation for inborn errors of metabolism. J Inherit Metab Dis 29(2-3):413–420

    Article  PubMed  Google Scholar 

  58. Capotondo A, Milazzo R, Politi LS, Quattrini A, Palini A, Plati T, Merella S, Nonis A, di Serio C, Montini E, Naldini L, Biffi A (2012) Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc Natl Acad Sci U S A 109(37):15018–15023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alméciga-Diaz C et al (2018) In: Tomatsu S et al (eds) Therapies for mucopolysaccharidoses: an overview, in Mucopolysaccharidoses Update (2 Volume Set). Nova Science Publishers, Inc., Hauppauge

    Google Scholar 

  60. Eisengart JB, Rudser KD, Xue Y, Orchard P, Miller W, Lund T, van der Ploeg A, Mercer J, Jones S, Mengel KE, Gökce S, Guffon N, Giugliani R, de Souza CFM, Shapiro EG, Whitley CB (2018) Long-term outcomes of systemic therapies for Hurler syndrome: an international multicenter comparison. Genet Med 20(11):1423–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A (2017) Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis 40(4):543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ornaghi F, Sala D, Tedeschi F, Maffia MC, Bazzucchi M, Morena F, Valsecchi M, Aureli M, Martino S, Gritti A (2020) Novel bicistronic lentiviral vectors correct β-Hexosaminidase deficiency in neural and hematopoietic stem cells and progeny: implications for in vivo and ex vivo gene therapy of GM2 gangliosidosis. Neurobiol Dis 134:104667

    Article  PubMed  CAS  Google Scholar 

  63. Ruiz de Garibay AP, Solinís MA, Rodríguez-Gascón A (2013) Gene therapy for fabry disease: a review of the literature. BioDrugs 27(3):237–246

    Article  CAS  PubMed  Google Scholar 

  64. Visigalli I, Delai S, Politi LS, di Domenico C, Cerri F, Mrak E, D'Isa R, Ungaro D, Stok M, Sanvito F, Mariani E, Staszewsky L, Godi C, Russo I, Cecere F, del Carro U, Rubinacci A, Brambilla R, Quattrini A, di Natale P, Ponder K, Naldini L, Biffi A (2010) Gene therapy augments the efficacy of hematopoietic cell transplantation and fully corrects mucopolysaccharidosis type I phenotype in the mouse model. Blood 116(24):5130–5139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Visigalli I, Delai S, Ferro F, Cecere F, Vezzoli M, Sanvito F, Chanut F, Benedicenti F, Spinozzi G, Wynn R, Calabria A, Naldini L, Montini E, Cristofori P, Biffi A (2016) Preclinical testing of the safety and tolerability of lentiviral vector-mediated above-normal alpha-L-iduronidase expression in murine and human hematopoietic cells using toxicology and biodistribution good laboratory practice studies. Hum Gene Ther 27(10):813–829

    Article  CAS  PubMed  Google Scholar 

  66. Poletto E, Baldo G, Gomez-Ospina N (2020) Genome editing for mucopolysaccharidoses. Int J Mol Sci 21(2)

  67. Aljurf M, Weisdorf D, Hashmi SK, Nassar A, Gluckman E, Mohty M, Rizzo D, Pasquini M, Hamadani M, Saber W, Hari P, Kharfan-Dabaja M, Majhail N, Gerges U, Ali Hamidieh A, Hussain F, Elhaddad A, Mahmoud HK, Tbakhi A, Othman TB, Hamladji RM, Bekadja MA, Ahmed P, Bazarbachi A, Adil S, Alkindi S, Ladeb S, Dennison D, Patel M, Lu P, Quessar AE, Okamoto S, Atsuta Y, Alhejazi A, Ayas M, Ahmed SO, Novitzky N, Srivastava A, Seber A, Elsolh H, Ghavamzadeh A, Confer D, Kodera Y, Greinix H, Szer J, Horowitz M, Niederwieser D (2020) Worldwide Network for Blood and Marrow Transplantation (WBMT) recommendations for establishing a hematopoietic stem cell transplantation program in countries with limited resources (Part II): clinical, technical and socio-economic considerations. Hematol Oncol Stem Cell Ther 13(1):7–16

    Article  CAS  PubMed  Google Scholar 

  68. Wang D, Gao G (2014) State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 18(97):67–77

    PubMed  PubMed Central  Google Scholar 

  69. Alméciga-Diaz CJ, Barrera LA (2020) Design and applications of gene therapy vectors for mucopolysaccharidosis in Colombia. Gene Ther 27(1-2):104–107

    Article  PubMed  CAS  Google Scholar 

  70. Schuh RS, Baldo G, Teixeira HF (2016) Nanotechnology applied to treatment of mucopolysaccharidoses. Expert Opin Drug Deliv 13(12):1709–1718

    Article  CAS  PubMed  Google Scholar 

  71. Alméciga-Díaz C, Cuaspa R, Barrera L (2011) In: Yuan X (ed) Gene delivery systems: tailoring vectors to reach specific tissues, in Non-viral Gene Therapy. InTech: Rijeka, Croatia, pp 51–76

    Google Scholar 

  72. Ohashi T (2019) Gene therapy for lysosomal storage diseases and peroxisomal diseases. J Hum Genet 64(2):139–143

    Article  PubMed  Google Scholar 

  73. Schuh RS, de Carvalho TG, Giugliani R, Matte U, Baldo G, Teixeira HF (2018) Gene editing of MPS I human fibroblasts by co-delivery of a CRISPR/Cas9 plasmid and a donor oligonucleotide using nanoemulsions as nonviral carriers. Eur J Pharm Biopharm 122:158–166

    Article  CAS  PubMed  Google Scholar 

  74. Schuh RS, Poletto É, Pasqualim G, Tavares AMV, Meyer FS, Gonzalez EA, Giugliani R, Matte U, Teixeira HF, Baldo G (2018) In vivo genome editing of mucopolysaccharidosis I mice using the CRISPR/Cas9 system. J Control Release 288:23–33

    Article  CAS  PubMed  Google Scholar 

  75. Laoharawee K, DeKelver RC, Podetz-Pedersen KM, Rohde M, Sproul S, Nguyen HO, Nguyen T, St. Martin SJ, Ou L, Tom S, Radeke R, Meyer KE, Holmes MC, Whitley CB, Wechsler T, McIvor RS (2018) Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol Ther 26(4):1127–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ou L, DeKelver RC, Rohde M, Tom S, Radeke R, St. Martin SJ, Santiago Y, Sproul S, Przybilla MJ, Koniar BL, Podetz-Pedersen KM, Laoharawee K, Cooksley RD, Meyer KE, Holmes MC, McIvor RS, Wechsler T, Whitley CB (2019) ZFN-Mediated in vivo genome editing corrects murine hurler syndrome. Mol Ther 27(1):178–187

    Article  CAS  PubMed  Google Scholar 

  77. ClinicalTrials.gov. Ascending dose study of genome editing by the zinc finger nuclease (ZFN) therapeutic SB-318 in subjects with MPS I. [cited 2018 Dec]; Available from: https://clinicaltrials.gov/ct2/show/NCT02702115?term=sangamo&draw=1&rank=2.

  78. ClinicalTrials.gov. Ascending dose study of genome editing by the zinc finger nuclease (ZFN) therapeutic SB-913 in subjects with MPS II. [cited 2018 Dec]; Available from: https://clinicaltrials.gov/ct2/show/study/NCT03041324?term=sangamo&draw=1&rank=1.

  79. Sheridan C (2018) Sangamo’s landmark genome editing trial gets mixed reception. Nat Biotechnol 36(10):907–908

    Article  CAS  PubMed  Google Scholar 

  80. Ho BX et al (2018) In vivo genome editing as a therapeutic approach. Int J Mol Sci 19(9)

  81. Ceccaldi R, Rondinelli B, D'Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64

    Article  CAS  PubMed  Google Scholar 

  82. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Anand R, Beach A, Li K, Haber J (2017) Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature 544(7650):377–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Jabalameli HR, Zahednasab H, Karimi-Moghaddam A, Jabalameli MR (2015) Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders. Gene 558(1):1–5

    Article  CAS  PubMed  Google Scholar 

  86. Paschon DE, Lussier S, Wangzor T, Xia DF, Li PW, Hinkley SJ, Scarlott NA, Lam SC, Waite AJ, Truong LN, Gandhi N, Kadam BN, Patil DP, Shivak DA, Lee GK, Holmes MC, Zhang L, Miller JC, Rebar EJ (2019) Diversifying the structure of zinc finger nucleases for high-precision genome editing. Nat Commun 10(1):1133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, Paschon DE, Miller JC, Davidson RJ, Shivak D, Zhou S, Rieders J, Gregory PD, Holmes MC, Rebar EJ, High KA (2015) In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood 126(15):1777–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harmatz, P. EMPOWERS: a phase 1/2 clinical trial of SB-318 ZFN-mediated in vivo human genome editing for treatment of MPSI (Hurler Syndrome). 2019 Dec, 2019; Available from: https://www.sangamo.com/application/files/8915/4955/2276/WORLD_2019_SB-318_for_MPS_I_presentation_FINAL_05_FEB_2019.pdf.

  89. Muenzer, J. CHAMPIONS: a phase 1/2 clinical trial with dose escalation of SB-913 ZFN-mediated in vivo human genome editing for treatment of MPS II (Hunter Syndrome). 2019; Available from: https://www.sangamo.com/application/files/3115/4966/0063/WORLD_2019_SB-913_for_MPS_II_presentation_FINAL_05_FEB_2019.pdf.

  90. Li H, Pei W, Vergarajauregui S, Zerfas PM, Raben N, Burgess SM, Puertollano R (2017) Novel degenerative and developmental defects in a zebrafish model of mucolipidosis type IV. Hum Mol Genet 26(14):2701–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dunbar CE et al (2018) Gene therapy comes of age. Science 359(6372)

  92. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JRJ (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29(8):697–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CHK, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109(43):17484–17489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148

    Article  CAS  PubMed  Google Scholar 

  96. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14(1):49–55

    Article  CAS  PubMed  Google Scholar 

  97. Ramalingam S, Annaluru N, Kandavelou K, Chandrasegaran S (2014) TALEN-mediated generation and genetic correction of disease-specific human induced pluripotent stem cells. Curr Gene Ther 14(6):461–472

    Article  CAS  PubMed  Google Scholar 

  98. Lelieveld LT, Mirzaian M, Kuo CL, Artola M, Ferraz MJ, Peter REA, Akiyama H, Greimel P, van den Berg RJBHN, Overkleeft HS, Boot RG, Meijer AH, Aerts JMFG (2019) Role of β-glucosidase 2 in aberrant glycosphingolipid metabolism: model of glucocerebrosidase deficiency in zebrafish. J Lipid Res 60(11):1851–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  100. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Karimian A, Azizian K, Parsian H, Rafieian S, Shafiei-Irannejad V, Kheyrollah M, Yousefi M, Majidinia M, Yousefi B (2019) CRISPR/Cas9 technology as a potent molecular tool for gene therapy. J Cell Physiol 234(8):12267–12277

    Article  CAS  PubMed  Google Scholar 

  102. Wilson LOW, O'Brien AR, Bauer DC (2018) The current state and future of CRISPR-Cas9 gRNA design tools. Front Pharmacol 9:749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Pereira EM, Labilloy A, Eshbach ML, Roy A, Subramanya AR, Monte S, Labilloy G, Weisz OA (2016) Characterization and phosphoproteomic analysis of a human immortalized podocyte model of Fabry disease generated using CRISPR/Cas9 technology. Am J Physiol Ren Physiol 311(5):F1015–F1024

    Article  CAS  Google Scholar 

  104. Kaissarian N, Kang J, Shu L, Ferraz MJ, Aerts JM, Shayman JA (2018) Dissociation of globotriaosylceramide and impaired endothelial function in α-galactosidase-A deficient EA.hy926 cells. Mol Genet Metab 125(4):338–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kang JJ, Kaissarian NM, Desch KC, Kelly RJ, Shu L, Bodary PF, Shayman JA (2019) α-galactosidase A deficiency promotes von Willebrand factor secretion in models of Fabry disease. Kidney Int 95(1):149–159

    Article  CAS  PubMed  Google Scholar 

  106. Song HY et al (2019) Generation of GLA-knockout human embryonic stem cell lines to model autophagic dysfunction and exosome secretion in fabry disease-associated hypertrophic cardiomyopathy. Cells 8(4)

  107. Song HY et al (2016) Using CRISPR/Cas9-mediated gla gene knockout as an in vitro drug screening model for fabry disease. Int J Mol Sci 17(12)

  108. Kim MJ, Jeon S, Burbulla LF, Krainc D (2018) Acid ceramidase inhibition ameliorates α-synuclein accumulation upon loss of GBA1 function. Hum Mol Genet 27(11):1972–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pavan E et al (2020) CRISPR/Cas9 editing for gaucher disease modelling. Int J Mol Sci 21(9)

  110. Latour YL, Yoon R, Thomas SE, Grant C, Li C, Sena-Esteves M, Allende ML, Proia RL, Tifft CJ (2019) Human GLB1 knockout cerebral organoids: a model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Mol Genet Metab Rep 21:100513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Przybilla MJ, Ou L, Tăbăran AF, Jiang X, Sidhu R, Kell PJ, Ory DS, O'Sullivan MG, Whitley CB (2019) Comprehensive behavioral and biochemical outcomes of novel murine models of GM1-gangliosidosis and Morquio syndrome type B. Mol Genet Metab 126(2):139–150

    Article  CAS  PubMed  Google Scholar 

  112. Erwood S, Brewer RA, Bily TMI, Maino E, Zhou L, Cohn RD, Ivakine EA (2019) Modeling Niemann-Pick disease type C in a human haploid cell line allows for patient variant characterization and clinical interpretation. Genome Res 29(12):2010–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tseng WC et al (2018) Modeling Niemann-Pick disease type C1 in zebrafish: a robust platform for in vivo screening of candidate therapeutic compounds. Dis Model Mech 11(9)

  114. Lin Y, Cai X, Wang G, Ouyang G, Cao H (2018) Model construction of Niemann-Pick type C disease in zebrafish. Biol Chem 399(8):903–910

    Article  CAS  PubMed  Google Scholar 

  115. Du X, Lukmantara I, Yang H (2017) CRISPR/Cas9-mediated generation of Niemann-Pick C1 Knockout Cell Line. Methods Mol Biol 1583:73–83

    Article  CAS  PubMed  Google Scholar 

  116. Allende ML, Cook EK, Larman BC, Nugent A, Brady JM, Golebiowski D, Sena-Esteves M, Tifft CJ, Proia RL (2018) Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res 59(3):550–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang H, Shi J, Hachet MA, Xue C, Bauer RC, Jiang H, Li W, Tohyama J, Millar J, Billheimer J, Phillips MC, Razani B, Rader DJ, Reilly MP (2017) CRISPR/Cas9-mediated gene editing in human iPSC-Derived macrophage reveals lysosomal acid lipase function in human macrophages-brief report. Arterioscler Thromb Vasc Biol 37(11):2156–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. van der Wal E, Herrero-Hernandez P, Wan R, Broeders M, in 't Groen SLM, van Gestel T, van IJcken W, Cheung TH, van der Ploeg A, Schaaf GJ, Pijnappel WWMP (2018) Large-scale expansion of human ipsc-derived skeletal muscle cells for disease modeling and cell-based therapeutic strategies. Stem Cell Rep 10(6):1975–1990

    Article  CAS  Google Scholar 

  119. Gomez-Giro G, Arias-Fuenzalida J, Jarazo J, Zeuschner D, Ali M, Possemis N, Bolognin S, Halder R, Jäger C, Kuper WFE, van Hasselt PM, Zaehres H, del Sol A, van der Putten H, Schöler HR, Schwamborn JC (2019) Synapse alterations precede neuronal damage and storage pathology in a human cerebral organoid model of CLN3-juvenile neuronal ceroid lipofuscinosis. Acta Neuropathol Commun 7(1):222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Eaton SL, Proudfoot C, Lillico SG, Skehel P, Kline RA, Hamer K, Rzechorzek NM, Clutton E, Gregson R, King T, O’Neill CA, Cooper JD, Thompson G, Whitelaw CB, Wishart TM (2019) CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep 9(1):9891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Miki T et al (2019) Induced pluripotent stem cell derivation and ex vivo gene correction using a mucopolysaccharidosis type 1 disease mouse model. Stem Cells Int 2019:6978303

    PubMed  PubMed Central  Google Scholar 

  122. Gomez-Ospina N, Scharenberg SG, Mostrel N, Bak RO, Mantri S, Quadros RM, Gurumurthy CB, Lee C, Bao G, Suarez CJ, Khan S, Sawamoto K, Tomatsu S, Raj N, Attardi LD, Aurelian L, Porteus MH (2019) Human genome-edited hematopoietic stem cells phenotypically correct Mucopolysaccharidosis type I. Nat Commun 10(1):4045

    Article  PubMed  PubMed Central  Google Scholar 

  123. Parini R, Deodato F, di Rocco M, Lanino E, Locatelli F, Messina C, Rovelli A, Scarpa M (2017) Open issues in Mucopolysaccharidosis type I-Hurler. Orphanet J Rare Dis 12(1):112

    Article  PubMed  PubMed Central  Google Scholar 

  124. Joy MT et al (2019) CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 176(5):1143–1157.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Coller BS (2019) Ethics of human genome editing. Annu Rev Med 70:289–305

    Article  CAS  PubMed  Google Scholar 

  126. Ou L, Przybilla MJ, Ahlat O, Kim S, Overn P, Jarnes J, O’Sullivan MG, Whitley CB (2020) A highly efficacious ps gene editing system corrects metabolic and neurological complications of Mucopolysaccharidosis type I. Mol Ther 28:1442–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ou L, Przybilla MJ, Tăbăran AF, Overn P, O’Sullivan MG, Jiang X, Sidhu R, Kell PJ, Ory DS, Whitley CB (2020) A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases. Gene Ther 27:226–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schuh RS, Bidone J, Poletto E, Pinheiro CV, Pasqualim G, de Carvalho TG, Farinon M, da Silva Diel D, Xavier RM, Baldo G, Matte U, Teixeira HF (2018) Nasal administration of cationic nanoemulsions as nucleic acids delivery systems aiming at Mucopolysaccharidosis type I gene therapy. Pharm Res 35(11):221

    Article  PubMed  CAS  Google Scholar 

  129. Schuh RS, Gonzalez EA, Tavares AMV, Seolin BG, Elias LS, Vera LNP, Kubaski F, Poletto E, Giugliani R, Teixeira HF, Matte U, Baldo G (2020) Neonatal nonviral gene editing with the CRISPR/Cas9 system improves some cardiovascular, respiratory, and bone disease features of the mucopolysaccharidosis I phenotype in mice. Gene Ther 27(1-2):74–84

    Article  CAS  PubMed  Google Scholar 

  130. Cachon-Gonzalez MB, Zaccariotto E, Cox TM (2018) Genetics and therapies for GM2 gangliosidosis. Curr Gene Ther 18(2):68–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cuellar M, Cifuentes J, Perez J, Suarez-Arnedo A, Serna J, Groot H, Muñoz-Camargo C, Cruz J (2018) Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int J Nanomedicine 13:8087–8094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu J, Gaj T, Wallen MC, Barbas CF III (2015) Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mol Ther Nucleic Acids 4:e232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462(1):15–24

    Article  CAS  PubMed  Google Scholar 

  134. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, Kim D, Lee MS, Go EM, Song HJ, Kim H, Cho N, Bang D, Kim S, Kim JS (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251–258

    Article  CAS  PubMed  Google Scholar 

  135. Sun N, Bao Z, Xiong X, Zhao H (2014) SunnyTALEN: a second-generation TALEN system for human genome editing. Biotechnol Bioeng 111(4):683–691

    Article  CAS  PubMed  Google Scholar 

  136. Nerys-Junior A, Braga-Dias LP, Pezzuto P, Cotta-de-Almeida V, Tanuri A (2018) Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene. Genet Mol Biol 41(1):167–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JRJ, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69

    Article  CAS  PubMed  Google Scholar 

  141. Bhakta MS, Segal DJ (2010) The generation of zinc finger proteins by modular assembly. Methods Mol Biol 649:3–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Greisman HA, Pabo CO (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275(5300):657–661

    Article  CAS  PubMed  Google Scholar 

  143. Joung JK, Ramm EI, Pabo CO (2000) A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proc Natl Acad Sci U S A 97(13):7382–7387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sung YH, Jin Y, Kim S, Lee HW (2014) Generation of knockout mice using engineered nucleases. Methods 69(1):85–93

    Article  CAS  PubMed  Google Scholar 

  146. Jiang S, Shen QW (2019) Principles of gene editing techniques and applications in animal husbandry. 3 Biotech 9(1):28

    Article  PubMed  PubMed Central  Google Scholar 

  147. Holkers M, Maggio I, Liu J, Janssen JM, Miselli F, Mussolino C, Recchia A, Cathomen T, Gonçalves MAFV (2013) Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res 41(5):e63

    Article  CAS  PubMed  Google Scholar 

  148. Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest 124(10):4154–4161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Walsh RM, Hochedlinger K (2013) A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci U S A 110(39):15514–15515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88

    Article  CAS  PubMed  Google Scholar 

  152. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110(39):15644–15649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA (2019) Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med 25(3):427–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chew WL, Tabebordbar M, Cheng JKW, Mali P, Wu EY, Ng AHM, Zhu K, Wagers AJ, Church GM (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 13(10):868–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Perkel J (2015) CRISPR/Cas faces the bioethics spotlight. Biotechniques 58(5):223–227

    Article  PubMed  Google Scholar 

  156. Kohn DB, Porteus MH, Scharenberg AM (2016) Ethical and regulatory aspects of genome editing. Blood 127(21):2553–2560

    Article  CAS  PubMed  Google Scholar 

  157. Plaza Reyes A (2017) and F. Lanner, Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development 144(1):3–7

    Article  PubMed  CAS  Google Scholar 

  158. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, Sun X, Fan Y (2016) Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet 33(5):581–588

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, Lv J, Xie X, Chen Y, Li Y, Sun Y, Bai Y, Songyang Z, Ma W, Zhou C, Huang J (2015) CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell 6(5):363–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Mueller K, Carlson-Stevermer J, Saha K (2018) Increasing the precision of gene editing. Curr Opin Biomed Eng 7:83–90

    Article  PubMed  PubMed Central  Google Scholar 

  161. Cribbs AP, Perera SMW (2017) Science and bioethics of CRISPR-Cas9 gene editing: an analysis towards separating facts and fiction. Yale J Biol Med 90(4):625–634

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

CJAD, AJEM, LHR, and JCC are supported by the Ministry of Science, Technology and Innovation, Colombia (Grant ID 120380763212—PPTA # 8352). CJAD and AJEM are supported by Pontificia Universidad Javeriana (PPTA # 8275). AFL received a doctoral scholarship from Pontificia Universidad Javeriana. OFS received a postdoctoral fellowship from the Ministry of Science, Technology and Innovation, Colombia (#811-2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Javier Alméciga-Díaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leal, A.F., Espejo-Mojica, A.J., Sánchez, O.F. et al. Lysosomal storage diseases: current therapies and future alternatives. J Mol Med 98, 931–946 (2020). https://doi.org/10.1007/s00109-020-01935-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-01935-6

Keywords

Navigation