Skip to main content
Log in

Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery

  • Basic Neurosciences, Genetics and Immunology - Review article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

It is usually assumed that kynurenic acid (KYNA) modifies neuronal function because it antagonizes the glycine site of the NMDA receptors and/or the neuronal cholinergic α7 nicotine receptors. It is not clear, however, whether the basal levels of KYNA found in brain extracellular spaces are sufficient to interact with these targets. Another reported target for KYNA is GPR35, an orphan receptor negatively coupled to Gi proteins. GPR35 is expressed both in neurons and other cells (including glia, macrophages and monocytes). KYNA affinity for GPR35 in native systems has not been clarified and the low-affinity data widely reported in the literature for the interaction between KYNA and human or rat GPR35 have been obtained in modified expression systems. Possibly by interacting with GPR35, KYNA may also reduce glutamate release in brain and pro-inflammatory cytokines release in cell lines. The inhibition of inflammatory mediator release from both glia and macrophages may explain why KYNA has analgesic effects in inflammatory models. Furthermore, it may also explain why, KYNA administration (200 mg/kg ip × 3 times) to mice treated with lethal doses of LPS, significantly reduces the number of deaths. Finally, KYNA has been reported as an agonist of aryl hydrocarbon receptor (AHR), a nuclear protein involved in the regulation of gene transcription and able to cause immunosuppression after binding with dioxin. Thus, KYNA has receptors in the nervous and the immune systems and may play interesting regulatory roles in cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bacciottini L, Pellegrini-Giampietro DE, Bongianni F, De Luca G, Beni M, Politi V et al (1987) Biochemical and behavioural studies on indole-pyruvic acid: a keto-analogue of tryptophan. Pharmacol Res Commun 19:803–817

    Article  PubMed  CAS  Google Scholar 

  • Campesan S, Green EW, Breda C, Sathyasaikumar KV, Muchowski PJ, Schwarcz R et al (2011) The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington’s disease. Curr Biol 21:961–966

    Article  PubMed  CAS  Google Scholar 

  • Carpenedo R, Chiarugi A, Russi P, Lombardi G, Carlà V, Pellicciari R et al (1994) Inhibitors of kynurenine hydroxylase and kynureninase increase cerebral formation of kynurenic acid and have sedative and anticonvulsant activities. Neuroscience 61:237–244

    Article  PubMed  CAS  Google Scholar 

  • Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M et al (2001) Presynaptic kynurenate sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147

    Article  PubMed  CAS  Google Scholar 

  • Carpenedo R, Meli E, Peruginelli F, Pellegrini-Giampietro DE, Moroni F (2002) Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures. J Neurochem 82:1465–1471

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A, Carpenedo R, Moroni F (1996) Kynurenine disposition in blood and brain of mice: effects of selective inhibitors of kynurenine hydroxylase and of kynureninase. J Neurochem 67:692–698

    Article  PubMed  CAS  Google Scholar 

  • Cosi C, Mannaioni G, Cozzi A, Carla V, Sili M, Cavone L et al (2011) G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology 60:1227–1231

    Article  PubMed  CAS  Google Scholar 

  • Cozzi A, Carpenedo R, Moroni F (1999) Kynurenine hydroxylase inhibitors reduce ischemic brain damage: studies with (m-nitrobenzoyl)-alanine (mNBA) and 3, 4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzensulfonamide (Ro 61–8048) in models of focal or global brain ischemia. J Cereb Blood Flow Metab 19:771–777

    Article  PubMed  CAS  Google Scholar 

  • Denison MS, Nagy SR (2003) Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol 43:309–334

    Article  PubMed  CAS  Google Scholar 

  • Di Serio C, Cozzi A, Angeli I, Doria L, Micucci I, Pellerito S et al (2005) Kynurenic acid inhibits the release of the neurotrophic fibroblast growth factor (FGF)-1 and enhances proliferation of glia cells, in vitro. Cell Mol Neurobiol 25:981–993

    Article  PubMed  Google Scholar 

  • DiNatale BC, Murray IA, Schroeder JC, Flaveny CA, Lahoti TS, Laurenzana EM et al (2010) Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci 115:89–97

    Article  PubMed  CAS  Google Scholar 

  • Dobrovolsky VN, Bowyer JF, Pabarcus MK, Heflich RH, Williams LD, Doerge DR et al (2005) Effect of arylformamidase (kynurenine formamidase) gene inactivation in mice on enzymatic activity, kynurenine pathway metabolites and phenotype. Biochim Biophys Acta 1724:163–172

    Article  PubMed  CAS  Google Scholar 

  • Erhardt S, Hajos M, Lindberg A, Engberg G (2000) Nicotine-induced excitation of locus coeruleus neurons is blocked by elevated levels of endogenous kynurenic acid. Synapse 37:104–108

    Article  PubMed  CAS  Google Scholar 

  • Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B et al (2007) High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem 103:590–603

    Article  PubMed  CAS  Google Scholar 

  • Foster A, Vezzani A, French ED, Schwarcz R (1984) Kynurenic acid blocks neurotoxicity and seizures induced in rats by the related brain metabolite quinolinic acid. Neurosci Lett 48:273–278

    Article  PubMed  CAS  Google Scholar 

  • Hilmas C, Pereira EFR, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits α7 nicotinic receptor activity and increases non α7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    PubMed  CAS  Google Scholar 

  • Hirata H, Hayaishi O (1975) Studies on Indoleamine 2, 3-dioxygenase. Superoxide anion as substrate. J Biol Chem 250:5960–5966

    PubMed  CAS  Google Scholar 

  • Homer A (1914) The constitution of kynurenic acid. J Biol Chem 17:509–518

    CAS  Google Scholar 

  • Jenkins L, Alvarez-Curto E, Campbell K, de Munnik S, Canals M, Schlyer S et al (2011) Agonist activation of the G protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Galpha and beta-arrestin-2. Br J Pharmacol 162:733–748

    Article  PubMed  CAS  Google Scholar 

  • Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR, Stoclet JC (1990) Loss of vascular responsiveness induced by endotoxin involves l-arginine pathway. Am J Physiol 259:H1038–H1043

    PubMed  CAS  Google Scholar 

  • Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with NMDA receptors: characterisation and identification of a new class of antagonist. J Neurochem 52:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Lapin IP (1976) Depressor effect of kynurenine and its metabolites in rats. Life Sci 19:1479–1484

    Article  PubMed  CAS  Google Scholar 

  • Lapin IP (1980) Experimental studies on kynurenine as neuroactive tryptophan metabolites: past, present and future. Trends Pharmacol Sci 1:410–413

    Article  CAS  Google Scholar 

  • Lugo-Huitron R, Blanco-Ayala T, Ugalde-Muniz P, Carrillo-Mora P, Pedraza-Chaverri J, Silva-Adaya D et al (2011) On the antioxidant properties of kynurenic acid: Free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol Teratol 33:538–547

    Article  PubMed  CAS  Google Scholar 

  • Mehler AH, Knox WE (1950) Conversion of tryptophan to kynurenine in liver II. The enzymatic hydrolysis of formylkynurenine. J Biol Chem 187:431–433

    PubMed  CAS  Google Scholar 

  • Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA (2010) An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol 185:3190–3198

    Article  PubMed  CAS  Google Scholar 

  • Milligan G (2011) Orthologue selectivity and ligand bias: translating the pharmacology of GPR35. Trends Pharmacol Sci 32:317–325

    Article  PubMed  CAS  Google Scholar 

  • Moroni F (1999) Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375:87–100

    Article  PubMed  CAS  Google Scholar 

  • Moroni F, Russi P, Carlà V, Lombardi G (1988a) Kynurenic acid is present in the rat brain and its content increases during development and aging processes. Neurosci Lett 94:145–150

    Article  PubMed  CAS  Google Scholar 

  • Moroni F, Russi P, Lombardi G, Beni M, Carlà V (1988b) Presence of kynurenic acid in the mammalian brain. J Neurochem 51:177–181

    Article  PubMed  CAS  Google Scholar 

  • Moroni F, Russi P, Gallo-Mezo MA, Moneti G, Pellicciari R (1991) Modulation of quinolinic and kynurenic acid content in the rat brain: effects of endotoxins and nicotinylalanine. J Neurochem 57:1630–1635

    Article  PubMed  CAS  Google Scholar 

  • Moroni F, Fossati S, Chiarugi A, Cozzi A (2007) Kynurenic acid action in brain and periphery. Int Congr Series 1304:305–314

    Article  CAS  Google Scholar 

  • Nemeth H, Robotka H, Kis Z, Rozsa E, Janaky T, Somlai C et al (2004) Kynurenine administered together with probenecid markedly inhibits pentylenetetrazol-induced seizures. An electrophysiological and behavioural study. Neuropharmacology 47:916–925

    Article  PubMed  CAS  Google Scholar 

  • Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K et al (2010) Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci USA 107:19961–19966

    Article  PubMed  CAS  Google Scholar 

  • Nozaki K, Beal MF (1992) Neuroprotective effects of l-kynurenine on hypoxia-ischemia and NMDA lesions in neonatal rats. J Cereb Blood Flow Metab 12:400–407

    Article  PubMed  CAS  Google Scholar 

  • Ohshiro H, Tonai-Kachi H, Ichikawa K (2008) GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem Biophys Res Commun 365:344–348

    Article  PubMed  CAS  Google Scholar 

  • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    Article  PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1982) Specificity of kynurenic acid as an antagonist of synaptic transmission in rat hippocampal slices. Neurosci Lett 18:432

    Google Scholar 

  • Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ et al (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35:1734–1742

    PubMed  CAS  Google Scholar 

  • Rossi F, Schwarcz R, Rizzi M (2008) Curiosity to kill the KAT (kynurenine aminotransferase): structural insights into brain kynurenic acid synthesis. Curr Opin Struct Biol 18:748–755

    Article  PubMed  CAS  Google Scholar 

  • Russi P, Carlà V, Moroni F (1989) Indolpyruvic acid administration increases the brain content of kynurenic acid: is this a new avenue to modulate excitatory amino acid receptors in vivo? Biochem Pharmacol 38:2405–2409

    Article  PubMed  CAS  Google Scholar 

  • Russi P, Alesiani M, Lombardi G, Davolio P, Pellicciari R, Moroni F (1992) Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions. J Neurochem 59:2076–2080

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R, Whetsell WO, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318

    Article  PubMed  CAS  Google Scholar 

  • Stevens EA, Mezrich JD, Bradfield CA (2009) The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 127:299–311

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45:309–379

    PubMed  CAS  Google Scholar 

  • Swartz KJ, During MJ, Freese A, Beal MF (1990) Cerebral synthesis and release of kynurenic acid: an endogenous antagonist of excitatory amino acid receptors. J Neurosci 10:2965–2973

    PubMed  CAS  Google Scholar 

  • Tarantini F, Micucci I, Bellum S, Landriscina M, Garfinkel S, Prudovsky I et al (2001) The precursor but not the mature form of IL1alpha blocks the release of FGF1 in response to heat shock. J Biol Chem 276:5147–5151

    Article  PubMed  CAS  Google Scholar 

  • Thiemermann C, Vane J (1990) Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182:591–595

    Article  PubMed  CAS  Google Scholar 

  • Turski WA, Nakamura M, Todd WP, Carpenter BK, Whetsell WO, Schwarcz R (1988) Identification and quantification of kynurenic acid in human brain tissue. Brain Res 454:164–169

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Beal MF (1991) Comparative behavioral and pharmacological studies with centrally administered kynurenine and kynurenic acid in rats. Eur J Pharmacol 196:239–246

    Article  PubMed  CAS  Google Scholar 

  • Vecsei L, Miller J, MacGarvey U, Beal MF (1992) Kynurenine and probenecid inhibit pentylenetetrazol- and NMDLA-induced seizures and increase kynurenic acid concentrations in the brain. Brain Res Bull 28:233–238

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H et al (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    Article  PubMed  CAS  Google Scholar 

  • Zhao P, Sharir H, Kapur A, Cowan A, Geller EB, Adler MW et al (2010) Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and beta-arrestin2 with antinociceptive activity. Mol Pharmacol 78:560–568

    Article  PubMed  CAS  Google Scholar 

  • Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ et al (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145:863–874

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Moroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moroni, F., Cozzi, A., Sili, M. et al. Kynurenic acid: a metabolite with multiple actions and multiple targets in brain and periphery. J Neural Transm 119, 133–139 (2012). https://doi.org/10.1007/s00702-011-0763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-011-0763-x

Keywords

Navigation