Skip to main content

Advertisement

Log in

Antidiabetic drugs and risk of cancer

  • Review article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Antidiabetic drugs are an important group of medications used worldwide. They differ from each other in the mechanisms of lowering blood glucose as well as in adverse effects that may affect the course of the treatment and its efficacy. In recent years, new drugs have been discovered in order to improve the maintenance of proper blood glucose level and to reduce unwanted effects of these drugs. Their growing administration is related to the increasing incidence of diabetes observed in all countries in the world. Epidemiological data indicate that diabetes increases the risk of cancer, as well as the risk of death linked with neoplasms. It is still unknown whether this is an effect of antidiabetic drugs or just the effect of diabetes itself. In recent years there have been numerous investigations and meta-analyzes, based on both comparative and cohort studies trying to establish the relationship between antidiabetic pharmacotherapy and the incidence and mortality due to cancer. According to their findings, most of antidiabetic drugs increase the risk of cancer while only few of them show antitumor properties. Different mechanisms of action of glucose-lowering drugs may be responsible for these effects. However, most of the published studies concerning the influence of these drugs on cancer incidence were designed with some limitations and differed from each other in the approach.

In this review, we discuss the association between antidiabetic drugs used in monotherapy or polytherapy and cancer risk, and consider potential mechanisms responsible for the observed effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

BMI:

body mass index

CI:

confidence interval

DDDs:

defined daily doses

DNA:

deoxyribonucleic acid

DPP-4 inhibitors:

dipeptidyl peptidase-4 inhibitors

Egr-1:

early growth response-1 transcription factor

FDA:

Food and Drug Administration

GLP-1 agonists:

glucagon-like peptide-1 agonists

HR:

hazard ratio

IGF-1R:

insulin-like growth factor 1 receptor

IR:

insulin receptor

IU:

international unit

mTOR:

mammalian target of rapamycin

OR:

odds ratio

PPAR γ:

peroxisome proliferator-activated receptor gamma

p :

p-value (probability value)

RR:

relative risk

SC:

subcutaneous injection

SGLT2 inhibitors:

sodium/glucose cotransporter 2 inhibitors

SIR:

standardized incidence ratio

T2DM:

type 2 diabetes mellitus

TZDs:

thiazolidinediones

References

  1. Aguilar RB. Evaluating treatment algorithms for the management of patients with type 2 diabetes mellitus: a perspective on the definition of treatment success. Clin Ther 2011;33:408–24.

    Article  CAS  PubMed  Google Scholar 

  2. Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–86.

    Article  Google Scholar 

  3. Richardson LC, Pollack LA. Therapy insight: Influence of type 2 diabetes on the development, treatment and outcomes of cancer. Nat Clin Pract Oncol 2005;2(1):48–53.

    Article  PubMed  Google Scholar 

  4. Harding JL, Shaw JE, Peeters A, Cartensen B, Magliano DJ. Cancer risk among people with type 1 and type 2 diabetes: disentangling true associations, detection bias, and reverse causation. Diab Care 2015;38:264–70.

    Article  Google Scholar 

  5. Barone BB, Yeh HC, Snyder CF, Peair KS, Stein KB, Derr RL, et al. Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 2008;300(23):2754–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zendehdel K, Nyrén O, Ostenson CG, Adami HO, Ekbom A, Ye W. Cancer incidence in patients with type 1 diabetes mellitus: a population-based cohort study in Sweden. J Natl Cancer Inst 2003;95(23):1797–800.

    Article  PubMed  Google Scholar 

  7. Morrione A, Valentinis B, Xu SQ, Yumet G, Louvi A, Efstratiadis A, et al. Insulinlike growth factor II stimulates cell proliferation through the insulin receptor. Proc Natl Acad Sci U S A 1997;94(8):3777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Fagan DH, Zeng X, Freeman KT, Sachdev D, Yee D. Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene 2010;29(17):2517–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gu Y, Wang C, Zheng Y, Hou X, Mo Y, Yu W, et al. Cancer incidence and mortality in patients with type 2 diabetes treated with human insulin:a cohort study in Shanghai. PLoS One 2013;8(1):e53411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Currie CJ, Poole CD, Gale EA. The influence of glucose lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009;52:1766–77.

    Article  CAS  PubMed  Google Scholar 

  11. Mathieu C, Gale EA. Inhaled insulin: gone with the wind. Diabetologia 2008;51:1–5.

    Article  CAS  PubMed  Google Scholar 

  12. von Kriegstein E, von Kriegstein K. Inhaled insulin for diabetes mellitus. N Engl J Med 2007;356:2106–8.

    Article  Google Scholar 

  13. Shukla A, Enzmann H, Mayer D. Proliferative effect of Apidra (insulin glulisine): a rapid-acting insulin analogue on mammary epithelial cells. Arch Physiol Biochem 2009;115(3):119–26.

    Article  CAS  PubMed  Google Scholar 

  14. Hemkens LG, Grouven U, Bender R, Günster C, Gutschmidt S, Selke GW, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 2009;52(9):1732–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kurtzhals P, Schäffer L, Sørensen A, Kristensen C, Jonassen I, Schmid C, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 2000;49(6):999–1005.

    Article  CAS  PubMed  Google Scholar 

  16. Jonasson JM, Ljung R, Talbäck M, Haglund B, Gudbjörnsdòttir S, Steineck G. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia 2009;52(9):1745–54.

    Article  CAS  PubMed  Google Scholar 

  17. Colhoun HM, SDRN Epidemiology Group. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 2009;52:1755–65.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chang CH, Toh S, Lin JW, Chen ST, Kuo CW, Chuang LM, et al. Cancer risk associated with insulin glargine among adult type 2 diabetes patients – a nationwide cohort study. PLoS ONE 2011;6:e21368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morden NE, Liu SK, Smith J, Mackenzie TA, Skinner J, Korc M. Further exploration of the relationship between insulin glargine and incident cancer: a retrospective cohort study of older Medicare patients. Diabetes Care 2011;34:1965–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monami M, Mannucci E. Efficacy and safety of degludec insulin: a meta-analysis of randomised trials. Curr Med Res Opin 2013;29(4):339–42.

    Article  CAS  PubMed  Google Scholar 

  21. Dejgaard A, Lynggaard H, Råstam J, Krogsgaard Thomsen M. No evidence of increased risk of malignancies in patients with diabetes treated with insulin detemir: a meta-analysis. Diabetologia 2009;52(12):2507–12.

    Article  CAS  PubMed  Google Scholar 

  22. ORIGIN Trial Investigators, Gerstein HC, Bosch J, Dagenais GR, Díaz R, Jung H, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 2012;367(4):319–28.

    Article  CAS  Google Scholar 

  23. US Food and Drug Administration FDA Drug Safety Communication: update to ongoing safety review of Lantus (insulin glargine) and possible risk of cancer. https://doi.org/www.fda.gov/Drugs/DrugSafety/ucm239376.htm; [accessed 19.03.12].

  24. Bowker SL, Yasui Y, Veugelers P, Johnson JA. Glucose lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia 2010;53:1631–7.

    Article  CAS  PubMed  Google Scholar 

  25. Simo R, Plana-Ripoll O, Puente D, Morros R, Mundet X, Vilca LM, et al. Impact of glucose-lowering agents on the risk of cancer in type 2 diabetic patients, the Barcelona case–control study. PLoS ONE 2013;8(11):e79968.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Staa TP, Patel D, Gallagher AM, de Bruin ML. Glucose-lowering agents and the patterns of risk for cancer: a study with the General Practice Research Database and secondary care data. Diabetologia 2012;55:654–65.

    Article  CAS  PubMed  Google Scholar 

  27. Tseng CH. Thyroid cancer risk is not increased in diabetic patients. PLoS One 2012;7(12):e53096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diab Care 2006;29:254–8.

    Article  Google Scholar 

  29. Li D, Yeung SC, Hassan MM, Konopleva M, Abbruzzese JL. Antidiabetic therapies affect risk of pancreatic cancer. Gastroenterology 2009;137(2):482–8.

    Article  PubMed  Google Scholar 

  30. Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E.. Sulphonylureas and cancer: a case–control study. Acta Diabetol 2009;46:279–84.

    Article  CAS  PubMed  Google Scholar 

  31. Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism 2013;62(7): 922–34.

    Article  CAS  PubMed  Google Scholar 

  32. Yang X, So WY, Ma RC, Yu LW, Ko GT, Kong AP, et al. Use of sulphonylurea and cancer in type 2 diabetes-The Hong Kong Diabetes Registry. Diabetes Res Clin Pract 2010;90(3):343–51.

    Article  CAS  PubMed  Google Scholar 

  33. Bo S, Castiglione A, Ghigo E, Gentile L, Durazzo M, Cavallo-Perin P, et al. Mortality outcomes of different sulphonylurea drugs: the results of a 14-year cohort study of type 2 diabetic patients. Eur J Endocrinol 2013;169(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  34. Qiu H, Rhoads GG, Berlin JA, Marcella SW, Demissie K. Initial metformin or sulphonylurea exposure and cancer occurrence among patients with type 2 diabetes mellitus. Diabetes Obes Metab 2013;15(4):349–57.

    Article  CAS  PubMed  Google Scholar 

  35. El Sharkawi FZ, El Shemy HA, Khaled HM. Possible anticancer activity of rosuvastatine, doxazosin, repaglinide and oxcarbazepin. Asian Pac J Cancer Prev 2014;15(1):199–203.

    Article  PubMed  Google Scholar 

  36. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010;33(7): 1674–85.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Drucker DJ. The biology of incretin hormones. Cell Metab 2006;3(3):153–65.

    Article  CAS  PubMed  Google Scholar 

  38. Arora S, Mehrotra A, Gulati SC. Incretins and thiazolidinediones in glucose homeostasis and cancer: role of common polymorphisms. Cancer Lett 2012;323(2):128–34.

    Article  CAS  PubMed  Google Scholar 

  39. Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA 1996;93(15): 7911–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008;283(13):8723–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stulc T, Sedo A. Inhibition of multifunctional dipeptidyl peptidase-IV: is there a risk of oncological and immunological adverse effects? Diabetes Res Clin Pract 2010;88(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  42. Funch D, Gydesen H, Tornøe K, Major-Pedersen A, Chan KA. A prospective: claims-based assessment of the risk of pancreatitis and pancreatic cancer with liraglutide compared to other antidiabetic drugs. Diabetes Obes Metab 2014;16(3):273–5.

    Article  CAS  PubMed  Google Scholar 

  43. Raz I, Bhatt DL, Hirshberg B, Mosenzon O, Scirica BM, Umez-Eronini A, et al. Incidence of pancreatitis and pancreatic cancer in a randomized controlled multicenter trial (SAVOR-TIMI 53) of the dipeptidyl peptidase-4 inhibitor saxagliptin. Diabetes Care 2014;37(9):2435–41.

    Article  CAS  PubMed  Google Scholar 

  44. Elashoff M, Matveyenko AV, Gier B, Elashoff R, Butler PC. Pancreatitis, pancreatic, and thyroid cancer with glucagon like peptide-1-based therapies. Gastroenterology 2011;141:150–6.

    Article  CAS  PubMed  Google Scholar 

  45. European Association for the Study of Diabetes, EASD commentary on the publication by Elashoff et al., published online in Gastroenterology, February 2011: Increased incidence of pancreatitis and cancer among patients given glucagon like peptide-1-based therapy. Available from: https://doi.org/www.easd.org/easdwebfiles/statements/Elashoff Commentary.pdf;[accessed 19.03.12].

  46. Imeryüz N, Yeğen BC, Bozkurt A, Coşkun T, Villanueva-Peñacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferentmediated central mechanisms. Am J Physiol 1997;273:920–7.

    Google Scholar 

  47. Kissow H, Hartmann B, Holst JJ, Viby NE, Hansen LS, Rosenkilde MM, et al. Glucagon-like peptide-1 (GLP-1) receptor agonism or DPP-4 inhibition does not accelerate neoplasia in carcinogen treated mice. Regul Pept 2012; 179(1–3):91–100.

    Article  CAS  PubMed  Google Scholar 

  48. Femia AP, Raimondi L, Maglieri G, Lodovici M, Mannucci E, Caderni G. Long-term treatment with Sitagliptin, a dipeptidyl peptidase-4 inhibitor, reduces colon carcinogenesis and reactive oxygen species in 1,2-dimethylhydrazine-induced rats. Int J Cancer 2013;133(10):2498–24503.

    Article  CAS  PubMed  Google Scholar 

  49. Alves C, Batel-Marques F, Macedo AF. A meta-analysis of serious adverse events reported with exenatide and liraglutide: acute pancreatitis and cancer. Diabetes Res Clin Pract 2012;98(2):271–84.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang ZJ, Zheng ZJ, Kan H, Song Y, Cui W, Zhao G, et al. Reduced risk of colorectal cancer with metformin therapy in patients with type 2 diabetes: a meta-analysis. Diabetes Care 2011;34:2323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noto H, Goto A, Tsujimoto T, Noda M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One 2012; 7(3):e33411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann NY Acad Sci 2011;1243:54–68.

    Article  CAS  PubMed  Google Scholar 

  53. Lai SW, Liao KF, Chen PC, Tsai PY, Hsieh DP, Chen CC. Antidiabetes drugs correlate with decreased risk of lung cancer: a population-based observation in Taiwan. Clin Lung Cancer 2012;13(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  54. Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA. Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev Res (Phila) 2010;3(9):1066–76.

    Article  CAS  Google Scholar 

  55. Sahra IB, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008;27: 3576–86.

    Article  CAS  PubMed  Google Scholar 

  56. Blandino G, Valerio M, Cioce M, Mori F, Casadei L, Pulito C, et al. Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nat Commun 2012;3:865.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou K, Bellenguez C, Spencer CC, Bennett AJ, Coleman RL, Tavendale R, et al. Common variants near ATM are associated with glycemic response to metformin in type 2 diabetes. Nat Genet 2011;43(2):117–20.

    Article  CAS  PubMed  Google Scholar 

  59. Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care 2012;35:299–304.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009;69:7507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011;71(9):3196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Janjetovic K, Vucicevic L, Misirkic M, Vilimanovich U, Tovilovic G, Zogovic N, et al. Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt. Eur J Pharmacol 2011; 651(1–3):41–50.

    Article  CAS  PubMed  Google Scholar 

  63. Lin HC, Kachingwe BH, Lin HL, Cheng HW, Uang YS, Wang LH. Effects of metformin dose on cancer risk reduction in patients with type 2 diabetes mellitus: a 6-year follow-up study. Pharmacotherapy 2014;34(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  64. Hosono K, Endo H, Takahashi H, Sugiyama M, Sakai E, Uchiyama T, et al. Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer 2010;3(9):1077–83.

    CAS  Google Scholar 

  65. Riedmaier AM, Fisel P, Nies AT, Schaeffeler E, Schwab M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci 2013;34(2):126–35.

    Article  CAS  Google Scholar 

  66. Chou FS, Wang PS, Kulp S, Pinzone JJ. Effects of thiazolidinediones on differentiation, proliferation, and apoptosis. Mol Cancer Res 2007;5(6):523–30.

    Article  CAS  PubMed  Google Scholar 

  67. Okumura T. Mechanisms by which thiazolidinediones induce anticancer effects in cancers in digestive organs. J Gastroenterol 2010;45:1097–102.

    Article  CAS  PubMed  Google Scholar 

  68. Wu CW, Farrell GC, Yu J. Functional role of PPAR gamma in hepatocellular carcinoma. J Gastroenterol Hepatol 2012;27:1665–9.

    Article  CAS  PubMed  Google Scholar 

  69. Takeuchi S, Okumura T, Motomura W, Nagamine M, Takahashi N, Kohgo Y. Troglitazone induces G1 arrest by p27Kip1 induction that is mediated by inhibition of proteasome in human gastric cancer cells. Cancer Sci 2002;93:774–82.

    CAS  Google Scholar 

  70. Chang CH, Lin JW, Wu LC, Lai MS, Chuang LM, Chan KA. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology 2012;55(5):1462–72.

    Article  CAS  PubMed  Google Scholar 

  71. Pal T, Joshi H, Ramaa CS. Development of oxazol-5-ones as potential partial PPAR-agonist against cancer cell lines. Anticancer Agents Med Chem 2014;14(6):872–83.

    Article  CAS  PubMed  Google Scholar 

  72. Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L, et al. Thiazolidinediones and risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol 2007;25:1476–81.

    Article  CAS  PubMed  Google Scholar 

  73. Koro C, Barrett S, Qizilbash N. Cancer risks in thiazolidinedione users compared to other anti-diabetic agents. Pharmacoepidemiol Drug Saf 2007;16:485–92.

    Article  CAS  PubMed  Google Scholar 

  74. Lewis JD, Capra AM, Achacoso NS, Ferrara A, Levin TR, Quesenberry CP, et al. Thiazolidinedione therapy is not associated with increased colonic neoplasia risk in patients with diabetes mellitus. Gastroeneterology 2008;135:1914–23.

    Article  CAS  Google Scholar 

  75. Mamtani R, Haynes K, Bilker WB, Vaughn DJ, Strom BL, Glanz K, et al. Association between longer therapy with thiazolidinediones and risk of bladder cancer: a cohort study. J Natl Cancer Inst 2012;104:1411–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. European Medicines Agency European Medicines Agency recommends new contraindications and warnings for pioglitazone to reduce small increased risk of bladder cancer. Available from: https://doi.org/www.ema.europa.eu/docs/en_GB/document_library/Press_release/2011/07/WC500109176.pdf [accessed 19.03.12].

  77. US Food and Drug Administration FDA Drug Safety Communication: Update to ongoing safety review of Actos (pioglitazone) and increased risk of bladder cancer. https://doi.org/www.fda.gov/Drugs/DrugSafety/ucm259150.htm [accessed 19.03.12].

  78. Singh S, Singh PP, Singh AG, Murad MH, Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol 2013;108:881–91.

    Article  CAS  PubMed  Google Scholar 

  79. Singh S, Singh PP, Singh AG, Murad MH, McWilliams RR, Chari ST. Anti-diabetic medications and risk of pancreatic cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Am J Gastroenterol 2013;108:510–9.

    Article  CAS  PubMed  Google Scholar 

  80. Ponz de Leon M, Bertarelli C, Casadei GP, Grilli A, Bacchini P, Pedroni M, et al. A case of pneumatosis cystoides intestinalis mimicking familial adenomatous polyposis. Fam Cancer 2013;12(3):573–6.

    Article  PubMed  Google Scholar 

  81. Riser Taylor S, Harris KB. The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus. Pharmacotherapy 2013;33(9):984–99.

    Article  CAS  PubMed  Google Scholar 

  82. Reilly TP, Graziano MJ, Janovitz EB, Dorr TE, Fairchild C, Lee F, et al. Carcinogenicity risk assessment supports the chronic safety of dapagliflozin, an inhibitor of sodium-glucose co-transporter 2, in the treatment of type 2 diabetes mellitus. Diabetes Ther 2014. https://doi.org/10.1007/s13300-014-0053-3.

  83. Food and Drug Administration. FDA Briefing Document NDA 202293. Dapagliflozin 5 and 10 mg. Available from https://doi.org/www.fda.gov/downloads/AdvisoryCommittees/Committees-MeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM262994.pdf [accessed 09.0513].

  84. Janssen Pharamecuticals I. FDA briefing document. NDA 204042. Invokana. (canagliflozin) Tablets. https://doi.org/www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM334550.pdf [accessed 13.04.13].

  85. Ceriello A, Gallo M, Armentano V, Perriello G, Gentile S, De Micheli A. Personalizing treatment in type 2 diabetes: a SMBG inclusive innovative approach. Diabetes Technol Ther 2012;14:373–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Tokajuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokajuk, A., Krzyżanowska-Grycel, E., Tokajuk, A. et al. Antidiabetic drugs and risk of cancer. Pharmacol. Rep 67, 1240–1250 (2015). https://doi.org/10.1016/j.pharep.2015.05.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2015.05.005

Keywords

Navigation