Skip to main content

Advertisement

Log in

Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Increasing evidence suggests that thiazolidinediones (TZDs) could have a therapeutic potential for patients with cancers. Here, the evidence on the mechanisms by which TZDs could contribute to different steps of cancer biology in the digestive system is summarized. According to studies, TZDs induce anti-cancer actions through 3 main pathways: (1) cell growth arrest, (2) induction of apoptosis, and (3) inhibition of cell invasion. Cell growth arrest is induced by an increased level of p27Kip1. p27Kip1 accumulation results from the inhibition of the ubiquitin-proteasome system and/or inhibition of MEK–ERK signaling. TZDs induce apoptosis through increased levels of apoptotic molecules, such as p53 and PTEN and/or decreased level of anti-apoptotic molecules, such as Bcl-2 and survivin. Inhibition of MEK–ERK signaling-mediated up-regulation of E-cadherin and claudin-4, and/or decreased expression of matrix metalloproteinases (MMPs) such as MMP-2 and MMP-9, play a role in the TZD-induced inhibition of cancer cell invasion. Thus, TZDs are capable of inducing anti-tumor action in a variety of ways in gastrointestinal cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Day C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med. 1999;16:179–92.

    Article  CAS  PubMed  Google Scholar 

  2. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276:37731–4.

    Article  CAS  PubMed  Google Scholar 

  3. Olefsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptor gamma agonists. J Clin Invest. 2000;106:467–72.

    Article  CAS  PubMed  Google Scholar 

  4. Sharma AM, Staels B. Review: peroxisome proliferator-activated receptor gamma and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism. J Clin Endocrinol Metab. 2007;92:386–95.

    Article  CAS  PubMed  Google Scholar 

  5. Koeffler HP. Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res. 2003;9:1–9.

    CAS  PubMed  Google Scholar 

  6. Grommes C, Landreth GE, Heneka MT. Antineoplastic effects of peroxisome proliferator-activated receptor gamma agonists. Lancet Oncol. 2004;5:419–29.

    Article  CAS  PubMed  Google Scholar 

  7. Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L, et al. Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol. 2007;25:1476–81.

    Article  CAS  PubMed  Google Scholar 

  8. Motomura W, Okumura T, Takahashi N, Obara T, Kohgo Y. Activation of PPARg by troglitazone inhibits cell growth through the increase of p27kip1 in human pancreatic carcinoma cells. Cancer Res. 2000;60:5558–64.

    CAS  PubMed  Google Scholar 

  9. Takeuchi S, Okumura T, Motomura W, Nagamine M, Takahashi N, Kohgo Y. Troglitazone induces G1 arrest by p27Kip1 induction that is mediated by inhibition of proteasome in human gastric cancer cells. Jpn J Cancer Res. 2002;93:774–82.

    CAS  PubMed  Google Scholar 

  10. Motomura W, Takahashi N, Nagamine M, Sawamukai M, Tanno S, Kohgo Y, et al. Growth arrest by troglitazone is mediated by p27Kip1 accumulation which is resulted from dual inhibition of proteasome activity and Skp2 expression in human hepatocellular carcinoma cells. Int J Cancer. 2004;108:41–6.

    Article  CAS  PubMed  Google Scholar 

  11. Koga H, Sakisaka S, Harada M, Hirai A, Miyamoto C, Hatakeyama S, et al. Involvement of p21(WAF1/Cip1), p27(Kip1), and p18(INK4c) in troglitazone-induced cell-cycle arrest in human hepatoma cell lines. Hepatology. 2001;33:1087–97.

    Article  CAS  PubMed  Google Scholar 

  12. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, et al. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science. 1995;269:682–5.

    Article  CAS  PubMed  Google Scholar 

  13. Shirane M, Harumiya Y, Ishida N, Hirai A, Miyamoto C, Hatakeyama S, et al. Down-regulation of p27Kip1 by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem. 1999;274:13886–93.

    Article  CAS  PubMed  Google Scholar 

  14. Carrano AC, Eytan E, Hershko A, Pagano M. Skp2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1:193–9.

    Article  CAS  PubMed  Google Scholar 

  15. Koga H, Harada M, Ohtsubo M, Shishido S, Kumemura H, Hanada S, et al. Troglitazone induces p27Kip1-associated cell cycle arrest through down-regulating Skp2 in human hepatoma cells. Hepatology. 2003;37:1086–96.

    Article  CAS  PubMed  Google Scholar 

  16. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  CAS  PubMed  Google Scholar 

  17. Wang C, Fu M, D’Amico M, Albanese C, Zhou JN, Brownlee M, et al. Inhibition of cellular proliferation through IkappaB kinase-independent and peroxisome proliferator-activated receptor gamma-dependent repression of cyclin D1. Mol Cell Biol. 2001;21:3057–70.

    Article  CAS  PubMed  Google Scholar 

  18. Yin F, Wakino S, Liu Z, Kim S, Hsueh WA, Collins AR, et al. Troglitazone inhibits growth of MCF-7 breast carcinoma cells by targeting G1 cell cycle regulators. Biochem Biophys Res Commun. 2001;286:916–22.

    Article  CAS  PubMed  Google Scholar 

  19. Betz MJ, Shapiro I, Fassnacht M, Hahner S, Reincke M, Beuschlein F. German and Austrian Adrenal Network. Peroxisome proliferator-activated receptor-gamma agonists suppress adrenocortical tumor cell proliferation and induce differentiation. J Clin Endocrinol Metab. 2005;90:3886–96.

    Article  CAS  PubMed  Google Scholar 

  20. He G, Thuillier P, Fischer SM. Troglitazone inhibits cyclin D1 expression and cell cycling independently of PPARgamma in normal mouse skin keratinocytes. J Invest Dermatol. 2004;123:1110–9.

    Article  CAS  PubMed  Google Scholar 

  21. Motomura W, Tanno S, Takahashi N, Nagamine M, Fukuda M, Kohgo Y, et al. Involvement of MEK–ERK signaling pathway in the inhibition of cell growth by troglitazone in human pancreatic cancer cells. Biochem Biophys Res Commun. 2005;332:89–94.

    Article  CAS  PubMed  Google Scholar 

  22. Sato H, Ishihara S, Kawashima K, Moriyama N, Suetsugu H, Kazumori H, et al. Expression of peroxisome proliferator-activated receptor (PPAR)γ in gastric cancer and inhibitory effects of PPARγ agonists. Br J Cancer. 2000;83:1394–400.

    Article  CAS  PubMed  Google Scholar 

  23. Chang TH, Szabo E. Induction of differentiation and apoptosis by ligands of peroxisome proliferator activated receptor gamma in non-small cell lung cancer. Cancer Res. 2000;60:1129–38.

    CAS  PubMed  Google Scholar 

  24. Tsubouchi Y, Sano H, Kawahito Y, Inoue K, Hla T, Sano H. Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun. 2000;270:400–5.

    Article  CAS  PubMed  Google Scholar 

  25. Takahashi N, Okumura T, Motomura W, Fujimoto Y, Kawabata I, Kohgo Y. Activation of PPARg inhibits cell growth and induces apoptosis in human gastric cancer cells. FEBS Lett. 1999;455:135–9.

    Article  CAS  PubMed  Google Scholar 

  26. Nagamine M, Okumura T, Tanno S, Sawamukai M, Motomura W, Takahashi N, et al. PPARr ligand-induced apoptosis through a p53 dependent mechanism in human gastric cancer cell. Cancer Sci. 2003;94:338–43.

    Article  CAS  PubMed  Google Scholar 

  27. Wright HM, Clish CB, Mikami T, Hauser S, Yanagi K, Hiramatsu R, et al. A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation. J Biol Chem. 2000;275:1873–7.

    Article  CAS  PubMed  Google Scholar 

  28. Shiau CW, Yang CC, Kulp SK, Chen KF, Chen CS, Huang JW, et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Res. 2005;65:1561–9.

    Article  CAS  PubMed  Google Scholar 

  29. Leung WK, Bai AH, Chan V, Yu J, Chan MW, To KF, et al. Effect of peroxisome proliferator activated receptor gamma ligands on growth and gene expression profiles of gastric cancer cells. Gut. 2004;53:331–8.

    Article  CAS  PubMed  Google Scholar 

  30. Mody M, Dharker N, Bloomston M, Wang PS, Chou FS, Glickman TS, et al. Rosiglitazone sensitizes MDA-MB-231 breast cancer cells to anti-tumour effects of tumour necrosis factor-alpha, CH11 and CYC202. Endocr Relat Cancer. 2007;14:305–15.

    Article  CAS  PubMed  Google Scholar 

  31. Yang FG, Zhang ZW, Xin DQ, Shi CJ, Wu JP, Guo YL, et al. Peroxisome proliferator-activated receptor gamma ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines. Acta Pharmacol Sin. 2005;26:753–61.

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Lee TW, Yim AP, Mok TS, Chen GG. Apoptosis induced by troglitazone is both peroxisome proliferator-activated receptor-gamma- and ERK-dependent in human non-small lung cancer cells. J Cell Physiol. 2006;209:428–38.

    Article  CAS  PubMed  Google Scholar 

  33. Srinivasula SM, Ashwell JD. IAPs: what’s in a name? Mol Cell. 2008;30:123–35.

    Article  CAS  PubMed  Google Scholar 

  34. Oshita F, Ito H, Ikehara M, Ohgane N, Hamanaka N, Nakayama H, et al. Prognostic impact of survivin, cyclin D1, integrin β1, VEGF in patients with small adenocarcinoma of stage I lung cancer. Am J Clin Oncol. 2004;27:425–8.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou YM, Wen YH, Kang XY, Qian HH, Yang JM, Yin ZF. Troglitazone, a peroxisomeproliferator-activated receptor gamma ligand, induces growth inhibition and apoptosis of HepG2 human liver cancer cells. World J Gastroenterol. 2008;14:2168–73.

    Article  CAS  PubMed  Google Scholar 

  36. Schultze K, Böck B, Eckert A, Oevermann L, Ramacher D, Wiestler O, et al. Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and Survivin. Apoptosis. 2006;11:1503–12.

    Article  CAS  PubMed  Google Scholar 

  37. Chojkier M. Troglitazone and liver injury: in search of answers. Hepatology. 2005;41:237–46.

    Article  CAS  PubMed  Google Scholar 

  38. Rachek LI, Yuzefovych LV, Ledoux SP, Julie NL, Wilson GL. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes. Toxicol Appl Pharmacol. 2009;240:348–54.

    Article  CAS  PubMed  Google Scholar 

  39. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  PubMed  Google Scholar 

  40. Durand MK, Bødker JS, Christensen A, Dupont DM, Hansen M, Jensen JK, et al. Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost. 2004;91:438–49.

    CAS  PubMed  Google Scholar 

  41. Sawai H, Liu J, Reber HA, Hines OJ, Eibl G. Activation of peroxisome proliferator-activated receptor-gamma decreases pancreatic cancer cell invasion through modulation of the plasminogen activator system. Mol Cancer Res. 2006;3:159–67.

    Article  Google Scholar 

  42. Galli A, Ceni E, Crabb DW, Mello T, Salzano R, Grappone C, et al. Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut. 2004;53:1688–97.

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Lu H, Huang R, Lin D, Wu X, Lin Q, et al. Peroxisome proliferator activated receptor-gamma ligands induced cell growth inhibition and its influence on matrix metalloproteinase activity in human myeloid leukemia cells. Cancer Chemother Pharmacol. 2005;56:400–8.

    Article  CAS  PubMed  Google Scholar 

  44. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.

    Google Scholar 

  45. Annicotte JS, Iankova I, Miard S, Fritz V, Sarruf D, Abella A, et al. Peroxisome proliferator-activated receptor gamma regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol Cell Biol. 2006;26:7561–74.

    Article  CAS  PubMed  Google Scholar 

  46. Kumei S, Motomura W, Yoshizaki T, Takakusaki K, Okumura T. Troglitazone increases expression of E-cadherin and claudin-4 in human pancreatic cancer cells. Biochem Biophys Res Commun. 2009;380:614–9.

    Article  CAS  PubMed  Google Scholar 

  47. Morin PJ. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 2005;65:9603–6.

    Article  CAS  PubMed  Google Scholar 

  48. Michl P, Barth C, Buchholz B, Lerch MM, Rolke M, Holzmann KH, et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res. 2003;63:6265–71.

    CAS  PubMed  Google Scholar 

  49. Han S, Roman J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther. 2006;5:430–7.

    Article  CAS  PubMed  Google Scholar 

  50. Wei S, Yang J, Lee SL, Kulp SK, Chen CS. PPARgamma-independent antitumor effects of thiazolidinediones. Cancer Lett. 2009;276:119–24.

    Article  CAS  PubMed  Google Scholar 

  51. Huang JW, Shiau CW, Yang YT, Kulp SK, Brueggemeier RW, Shapiro CL, et al. Peroxisome proliferator-activated receptor gamma-independent ablation of cyclin D1 by thiazolidinediones and their derivatives in breast cancer cells. Mol Pharmacol. 2005;67:1342–8.

    Article  CAS  PubMed  Google Scholar 

  52. Lu M, Kwan T, Yu C, Chen F, Freedman B, Schafer JM, et al. Peroxisome proliferator-activated receptor gamma agonists promote TRAIL-induced apoptosis by reducing survivin levels via cyclin D3 repression and cell cycle arrest. J Biol Chem. 2005;280:6742–51.

    Article  CAS  PubMed  Google Scholar 

  53. Inoue I, Katayama S, Takahashi K, Negishi K, Miyazaki T, Sonoda M, et al. Troglitazone has a scavenging effect on reactive oxygen species. Biochem Biophys Res Commun. 1997;235:113–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshikatsu Okumura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okumura, T. Mechanisms by which thiazolidinediones induce anti-cancer effects in cancers in digestive organs. J Gastroenterol 45, 1097–1102 (2010). https://doi.org/10.1007/s00535-010-0310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0310-9

Keywords

Navigation