Skip to main content

Advertisement

Log in

Non-isothermal Kinetic Analysis of Synthesis of Medical Applicable Fluorapatite in Solid-state Reaction

  • Original Article
  • Published:
Biomedical Materials & Devices Aims and scope Submit manuscript

Abstract

This paper presents the synthesis of Fluorapatite particles (FA; Ca10 (PO4)6F2) as biomaterials for bone regeneration and dentistry. The particles were synthesized by mechanically activating CaHPO4, Ca(OH)2 and CaF2, which served as the precursor materials. Subsequently, the precursors were heated under a non-isothermal condition using simultaneous thermo-gravimetry (TG) and differential thermal analysis (DTA). The heating rates employed were 7, 10, and 15 °C min−1, and the process was conducted up to 1100 °C in an Ar atmosphere. The X-ray diffraction (XRD) was utilized to analyze the phase composition. To determine the activation energy variation with the degree of conversion (α), four isoconversional methods: starink, KAS, FWO, and Friedman were employed for the kinetic study of synthesizing Fluorapatite particles under non-isothermal conditions. The results indicate that the activation energy does not change with α. The empirical kinetic triplets (E, A, and g(a)) were calculated using a fitting model and the invariant kinetic parameters (IKP) method. By combining the isoconversional methods, IKP, and the fitting model, the obtained kinetic model was identified as Diffusion-controlled of third order (D3) with \(g\left(\alpha \right)={[1-{\left(1-a\right)}^\frac{1}{3}]}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons and technical or time limitations.

References

  1. X.W. Wei Zhi, D. Sun, T. Chen, Bo. Yuan, X. Li, X. Chen, J. Wang, Z. Xie, X. Zhu, K. Zhang, X. Zhang, Optimal regenerative repair of large segmental bone defect in a goat model with osteoinductive calcium phosphate bioceramic implants. Bioact. Mater. 11, 240–253 (2022). https://doi.org/10.1016/j.bioactmat.2021.09.024

    Article  CAS  PubMed  Google Scholar 

  2. A.M. Castillo-Paz, B.A. Correa-Piña, H.D. Martinez-Hernandez, O.M. Gomez-Vazquez, D.F. Cañon-Davila, L.F. Zubieta-Otero, S.M. Londoño-Restrepo, E. Perez-Torrero, M.E. Rodriguez-Garcia, Influence of the changes in the bone mineral density on the guided bone regeneration using bioinspired grafts: a systematic review and meta-analysis. Biomed. Mater. Devices 1, 162–178 (2023). https://doi.org/10.1007/s44174-022-00026-z

    Article  Google Scholar 

  3. A.V. Balueva, I.N. Dashevskiy, W. Kwiatkowski, D.S. Lisovenko, Chemical reaction and strength of tricalcium phosphate nano-coating application on dental implants by atomistic calculations. Appl. Math. Modell. 127, 640–654 (2023). https://doi.org/10.1016/j.apm.2023.12.028

    Article  Google Scholar 

  4. S.K. Kucko, S.M. Raeman, T.J. Keenan, Current advances in hydroxyapatite- and β-tricalcium phosphate-based composites for biomedical applications: a review. Biomed. Mater. Devices 1, 49–65 (2023). https://doi.org/10.1007/s44174-022-00037-w

    Article  Google Scholar 

  5. S.C. Yue Wang, H. Liang, Y. Liu, J. Bai, M. Wang, Digital light processing (DLP) of nano biphasic calcium phosphate bioceramic for making bone tissue engineering scaffolds. Ceram. Int. 48, 27681–27692 (2022). https://doi.org/10.1016/j.ceramint.2022.06.067

    Article  CAS  Google Scholar 

  6. B.T. Léa Dejob, S. Tadier, L. Grémillard, C. Gaillard, V. Salles, Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: a review. Acta Biomater. 123, 123–153 (2021). https://doi.org/10.1016/j.actbio.2020.12.032

    Article  CAS  PubMed  Google Scholar 

  7. A.R.E. Maryam Mehdizade, F. Tabatabaei, S.H.M. Anijdan, H.R. Jafarian, Enhanced in-vitro biodegradation, bioactivity, and mechanical properties of Mg-based biocomposite via addition of calcium-silicate-based bioceramic through friction stir processing as resorbable temporary bone implant. J. Mater. Res. Technol. 26, 4007–4023 (2023). https://doi.org/10.1016/j.jmrt.2023.08.128

    Article  CAS  Google Scholar 

  8. W.W. Nafisah Mohd Rafiq, S.L. Liew, C.S. Chua, S. Wang, A review on multifunctional bioceramic coatings in hip implants for osteointegration enhancement. Appl. Surf. Sci. Adv. 13, 100353 (2023). https://doi.org/10.1016/j.apsadv.2022.100353

    Article  Google Scholar 

  9. W.J.B. Bahman Nasiri-Tabrizi, C.H. Yeong, W.M. Thein, Development of the third generation of bioceramics: doping hydroxyapatite with s-, p-, d-, and f-blocks cations and their potential applications in bone regeneration and void filling. Ceram. Int. 49, 7142–7179 (2023). https://doi.org/10.1016/j.ceramint.2022.12.117

    Article  CAS  Google Scholar 

  10. Su.M.C. Yingchao, S. Dobres, A.J. Kucine, W.C. Waltzer, D. Zhu, Supplemental mineral ions for bone regeneration and osteoporosis treatment. Eng. Regen. 4, 170–182 (2023). https://doi.org/10.1016/j.engreg.2023.02.003

    Article  Google Scholar 

  11. L.P. Kamil Pajor, J. Kolmas, Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology: a review. Materials 12, 2683 (2019). https://doi.org/10.3390/ma12172683

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Taktak, A. Elghazel, J. Bouaziz, S. Charfi, H. Keskes, Tricalcium phosphate-fluorapatite as bone tissue engineering: evaluation of bioactivity and biocompatibility. Mater. Sci. Eng. C 86, 121–128 (2018). https://doi.org/10.1016/j.msec.2017.11.011

    Article  CAS  Google Scholar 

  13. M.S. Seyedali Seyedmajidi, Fluorapatite: a review of synthesis, properties and medical applications versus hydroxyapatite. Iran. J. Mater. Sci. Eng. 19, 1–20 (2022). https://doi.org/10.22068/ijmse.2430

    Article  Google Scholar 

  14. F.H. Maziar Montazerian, C. Migneco, M.V.L. Fook, F. Baino, Bioceramic coatings on metallic implants: an overview. Ceram. Int. 48, 8987–9005 (2022). https://doi.org/10.1016/j.ceramint.2022.02.055

    Article  CAS  Google Scholar 

  15. A.L. Yu Zhuang, S. Jiang, U. Liaqat, K. Lin, W. Sun, C. Yuan, Promoting vascularized bone regeneration via strontium-incorporated hydroxyapatite bioceramic. Mater. Design 234, 112313 (2023). https://doi.org/10.1016/j.matdes.2023.112313

    Article  CAS  Google Scholar 

  16. S.K. Subhasmita Swain, T.R. Rautray, Bioceramic coating for tissue engineering applications. Adv. Ceram. Coat Biomed. Appl. (2023). https://doi.org/10.1016/B978-0-323-99626-6.00009-3

    Article  Google Scholar 

  17. W.L. Chaoqian Zhao, M. Zhu, Wu. Chengtie, Y. Zhu, Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: a review. Bioact. Mater. 18, 383–398 (2022). https://doi.org/10.1016/j.bioactmat.2022.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A.R. Ramadas Munusamy, K. El Mabrouk, B.M. Anbalagan, Polymer sponge replication technology derived strontium-substituted apatite (Sr-HAP) porous scaffolds for bone tissue engineering. Biomed. Mater. Devices. 1, 504–511 (2023). https://doi.org/10.1007/s44174-022-00017-0

    Article  Google Scholar 

  19. N.V. Bulina, S.V. Makarova, I.Y. Prosanov, O.B. Vinokurova, N.Z. Lyakhov, Structure and thermal stability of fluorhydroxyapatite and fluorapatite obtained by mechanochemical method. J. Solid State Chem. 282, 121076 (2020). https://doi.org/10.1016/j.jssc.2019.121076

    Article  CAS  Google Scholar 

  20. N. Jmal, J. Bouaziz, Fluorapatite-glass-ceramics obtained by heat treatment of a gel synthesized by the sol-gel processing method. Mater. Lett. 215, 280–283 (2018). https://doi.org/10.1016/j.matlet.2017.12.123

    Article  CAS  Google Scholar 

  21. M.M. Taheri, M. Rezazadeh Shirdar, A. Keyvanfar, A. Shafaghat, Evaluating hydrothermal synthesis of fluorapatite nanorods: pH and temperature. J. Exp. Nanosci. 12, 83–93 (2017). https://doi.org/10.1080/17458080.2016.1263400

    Article  CAS  Google Scholar 

  22. F. Barandehfard, M.K. Rad, A. Hosseinnia, K. Khoshroo, M. Tahriri, H. Jazayeri, K. Moharamzadeh, L. Tayebi, The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceram. Int. 42, 17866–17875 (2016). https://doi.org/10.1016/j.ceramint.2016.08.122

    Article  CAS  Google Scholar 

  23. M. Karimi, A. Jodaei, A. Sadeghinik, M.R. Ramsheh, T.M. Hafshejani, M. Shamsi, F. Orand, F. Lotfi, Deep eutectic choline chloride-calcium chloride as all-in-one system for sustainable and one-step synthesis of bioactive fluorapatite nanoparticles. J. Fluor. Chem. 204, 76–83 (2017). https://doi.org/10.1016/j.jfluchem.2017.10.011

    Article  CAS  Google Scholar 

  24. S.Y. Mosavian, R. Ebrahimi-Kahrizsangi, M.M. Khah, Z. Hamidi, A. Rafiei, M. Behzadi, Effect of mechanical activation on the kinetics of silica carbothermal reduction in non-isothermal conditions. SILICON 10, 387–394 (2018). https://doi.org/10.1007/s12633-016-9459-z

    Article  CAS  Google Scholar 

  25. A.M. Bandara, G. Senanayake, Dissolution of calcium, phosphate, fluoride and rare earth elements (REEs) from a disc of natural fluorapatite mineral (FAP) in perchloric, hydrochloric, nitric, sulphuric and phosphoric acid solutions: a kinetic model and comparative batch leaching of major and minor elements from FAP and RE-FAP concentrate. Hydrometallurgy 184, 218–236 (2019). https://doi.org/10.1016/j.hydromet.2018.09.002

    Article  CAS  Google Scholar 

  26. Z. Jaafari, A. Seifoddini, S. Hasani, P. Rezaei-Shahreza, Kinetic analysis of crystallization process in [(Fe 0.9 Ni 0.1) 77 Mo 5 P 9 C 7.5 B 1.5] 100–x Cu x (x= 0.1 at%) BMG: Non-isothermal condition. J. Therm. Anal. Calorim. 134, 1565–1574 (2018). https://doi.org/10.1007/s10973-018-7372-y

    Article  CAS  Google Scholar 

  27. R. Yahyaoui, P.E.S. Jimenez, L.A.P. Maqueda, K. Nahdi, J.M.C. Luque, Synthesis, characterization and combined kinetic analysis of thermal decomposition of hydrotalcite (Mg6Al2 (OH) 16CO3 4H2O). Thermochim. Acta 667, 177–184 (2018). https://doi.org/10.1016/j.tca.2018.07.025

    Article  CAS  Google Scholar 

  28. P. Rezaei-Shahreza, A. Seifoddini, S. Hasani, Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15) 94B6 amorphous alloy. Thermochim. Acta 652, 119–125 (2017). https://doi.org/10.1016/j.tca.2017.03.017

    Article  CAS  Google Scholar 

  29. H. Moussout, H. Ahlafi, M. Aazza, A. Amechrouq, Al2O3/chitosan nanocomposite: preparation, characterization and kinetic study of its thermal degradation. Thermochim. Acta 668, 169–177 (2018). https://doi.org/10.1016/j.tca.2018.08.023

    Article  CAS  Google Scholar 

  30. S. Hasani, M. Shamanian, A. Shafyei, P. Behjati, J. Szpunar, Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy. Thermochim. Acta 596, 89–97 (2014). https://doi.org/10.1016/j.tca.2014.09.020

    Article  CAS  Google Scholar 

  31. D. Yu, T.A. Utigard, TG/DTA study on the oxidation of nickel concentrate. Thermochim. Acta 533, 56–65 (2012). https://doi.org/10.1016/j.tca.2012.01.017

    Article  CAS  Google Scholar 

  32. S.A.H. Hamidreza Javadinejad, M.S. Rizi, E. Aghababaei, H. Naseri, Kinetic studies on the thermal synthesis of fluorapatite: model free and model-fitting methods. Adv. Eng. Forum 28, 75–89 (2018). https://doi.org/10.4028/www.scientific.net/AEF.28.75

    Article  Google Scholar 

  33. Y.L. Xuefei Zhang, X. Zhang, P. Ma, X. Xing, Co-combustion of municipal solid waste and hydrochars under non-isothermal conditions: thermal behaviors, gaseous emissions and kinetic analyses by TGA–FTIR. Energy 265, 126373 (2023). https://doi.org/10.1016/j.energy.2022.126373

    Article  CAS  Google Scholar 

  34. M.C. Bo Zhang, K. Sun, P. Geng, Fu. Peng, Y. Zhang, W. Yi, Kinetic compensation effects of non-isothermal gasification in the diffusion control region. Therm. Sci. Eng. Prog. 46, 102194 (2023). https://doi.org/10.1016/j.tsep.2023.102194

    Article  CAS  Google Scholar 

  35. S.D. Tuncay Dikici, M.M. Tünçay, B.K. Yildirim, N. Kaya, Effect of heating rate on structure, morphology and photocatalytic properties of TiO2 particles: thermal kinetic and thermodynamic studies. J. Sol-Gel Sci. Technol. 97, 622–637 (2021). https://doi.org/10.1007/s10971-020-05466-x

    Article  CAS  Google Scholar 

  36. Y.L. Jianliang Zhang, Z. Liu, T. Wang, Y. Wang, K. Li, G. Wang, Xu. Tao, Y. Zhang, Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen. Int. J. Miner. Metall. Mater. 29, 1830–1838 (2022). https://doi.org/10.1007/s12613-022-2518-0

    Article  CAS  Google Scholar 

  37. T.T. Huynh, T.C. Mai, C.H. Dang, T.T. Vo, D.T. Nguyen, V.S. Dang, K.D. Nguyen, V.T. Tran, T.D. Nguyen, Influence of extractions on physicochemical characterization and bioactivity of Piper nigrum oils: study on the non-isothermal decomposition kinetic. Arabian J. Chem. 13, 7289–7301 (2020). https://doi.org/10.1016/j.arabjc.2020.08.008

    Article  CAS  Google Scholar 

  38. A. Rajabi, A. Mashreghi, S. Hasani, Non-isothermal kinetic analysis of high temperature oxidation of Ti–6Al–4V alloy. J. Alloy Comp. 815, 151948 (2020). https://doi.org/10.1016/j.jallcom.2019.151948

    Article  CAS  Google Scholar 

  39. M.L. Iglesias-Montes, D.A. D’Amico, L.B. Malbos, I.T. Seoane, V.P. Cyras, L.B. Manfredi, Thermal degradation kinetics of completely biodegradable and biobased PLA/PHB Blends. Thermochim. Acta 725, 179530 (2023). https://doi.org/10.1016/j.tca.2023.179530

    Article  CAS  Google Scholar 

  40. S.H. Parisa Rezaei-Shahreza, S. Hasani, M. Nabiałek, P. Czaja, The crystallization process in a new multicomponent Fe-based bulk amorphous alloy: a kinetic study approach. Mater CharactCharact. 196, 112602 (2023). https://doi.org/10.1016/j.matchar.2022.112602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Islamic Azad Najafabad university, Yazd universities for scholarship provided and partial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have participated in (a) conception and design, or analysis and interpretation of the data; (b) drafting the article or revising it critically for important intellectual content; and (c) approval of the final version.

Corresponding author

Correspondence to Seyed Yousef Mosavian.

Ethics declarations

Conflict of interest

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosavian, S.Y., Ebrahimi-Kahrizsangi, R., Hamidi, Z. et al. Non-isothermal Kinetic Analysis of Synthesis of Medical Applicable Fluorapatite in Solid-state Reaction. Biomedical Materials & Devices (2024). https://doi.org/10.1007/s44174-024-00164-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s44174-024-00164-6

Keywords

Navigation