Skip to main content

Advertisement

Log in

Low-power infrared laser modulates mRNA levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury by sepsis. For experimental procedure, animals were randomly assigned to six main groups: (1) control group was animals treated with intraperitoneal saline solution; (2) LASER-10 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 10 J cm−2; (3) LASER-20 was animals treated with intraperitoneal saline solution and exposed to an infrared laser at 20 J cm−2; (4) acute lung injury (ALI) was animals treated with intraperitoneal LPS (10 mg kg−1); (5) ALI-LASER10 was animals treated with intraperitoneal LPS (10 mg kg−1) and, after 4 h, exposed to an infrared laser at 10 J cm−2 and (6) ALI-LASER20 was animals treated with intraperitoneal LPS (10 mg kg−1) and, after 4 h, exposed to an infrared laser at 20 J cm−2. Irradiation was performed only once and animal euthanasias for analysis of mRNA relative levels by RT-qPCR. Our results showed that there was a reduction of mRNA relative levels from ATM gene and an increase of mRNA relative levels from P53 gene in the heart of animals with ALI when compared to the control group. In addition, there was an increase of mRNA relative levels from OGG1 and APE1 gene in hearts from animals with ALI when compared to the control group. After irradiation, an increase of mRNA relative levels from ATM and OGG1 gene was observed at 20 J cm−2. In conclusion, low-power laser modulates the mRNA relative levels from genes of base excision repair and genomic stabilization in the experimental model of acute lung injury evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qin, X., Zhu, G., Huang, L., Zhang, W., Huang, Y., & Xi, X. (2019). LL-37 and its analog FF/CAP18 attenuate neutrophil migration in sepsis-induced acute lung injury. Journal of Cellular Biochemistry, 120(4), 4863–4871. https://doi.org/10.1002/jcb.27641

    Article  CAS  PubMed  Google Scholar 

  2. Xiaoli, L., Wujun, Z., & Jing, L. (2019). Blocking of tripartite motif 8 protects against lipopolysaccharide (LPS)-induced acute lung injury by regulating AMPKα activity. Biochemical and Biophysical Research Communications, 508(3), 701–708. https://doi.org/10.1016/j.bbrc.2018.11.072

    Article  CAS  PubMed  Google Scholar 

  3. Dries, D. J. (2016). Acute respiratory distress syndrome and lung protection. Air Medical Journal, 35(2), 59–62. https://doi.org/10.1016/j.amj.2015.12.011

    Article  PubMed  Google Scholar 

  4. Definition Task Force, A. R. D. S., Ranieri, V. M., Rubenfeld, G. D., Thompson, B. T., Ferguson, N. D., Caldwell, E., Fan, E., Camporota, L., & Slutsky, A. S. (2012). Acute respiratory distress syndrome. JAMA, 307(23), 2526–2533. https://doi.org/10.1001/jama.2012.5669

    Article  CAS  Google Scholar 

  5. Fan, E., Brodie, D., & Slutsky, A. S. (2018). Acute respiratory distress syndrome. JAMA, 319(7), 698–710. https://doi.org/10.1001/jama.2017.21907

    Article  PubMed  Google Scholar 

  6. Kim, W. Y., & Hong, S. B. (2016). Sepsis and acute respiratory distress syndrome: Recent update. Tuberculosis and Respiratory Diseases, 79(2), 53–57. https://doi.org/10.4046/trd.2016.79.2.53

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meyer, N., Harhay, M. O., Small, D. S., Prescott, H. C., Bowles, K. H., Gaieski, D. F., & Mikkelsen, M. E. (2018). Temporal trends in incidence, sepsis-related mortality, and hospital-based acute care after sepsis. Critical Care Medicine, 46(3), 354–360. https://doi.org/10.1097/CCM.0000000000002872

    Article  PubMed  Google Scholar 

  8. Drosatos, K., Lymperopoulos, A., Kennel, P. J., Pollak, N., Schulze, P. C., & Goldberg, I. J. (2015). Pathophysiology of sepsis-related cardiac dysfunction: Driven by inflammation, energy mismanagement, or both? Current Heart Failure Reports, 12(2), 130–140. https://doi.org/10.1007/s11897-014-0247-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martin, L., Derwall, M., Al Zoubi, S., Zechendorf, E., Reuter, D. A., Thiemermann, C., & Schuerholz, T. (2019). The septic heart: Current understanding of molecular mechanisms and clinical implications. Chest, 155(2), 427–437. https://doi.org/10.1016/j.chest.2018.08.1037

    Article  PubMed  Google Scholar 

  10. Ritter, C., Andrades, M. E., Reinke, A., Menna-Barreto, S., Moreira, J. C., & Dal-Pizzol, F. (2004). Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis*. Critical Care Medicine, 32(2), 342–349. https://doi.org/10.1097/01.ccm.0000109454.13145.ca

    Article  CAS  PubMed  Google Scholar 

  11. Aydin, S., Bacanli, M., Taner, G., Sahin, T., Basaran, A., & Basaran, N. (2013). Protective effects of resveratrol on sepsis-induced DNA damage in the lymphocytes of rats. Human & Experimental Toxicology, 32(10), 1048–1057. https://doi.org/10.1177/0960327112467047

    Article  CAS  Google Scholar 

  12. Nagar, H., Piao, S., & Kim, C. S. (2018). Role of mitochondrial oxidative stress in sepsis. Acute and Critical Care, 33(2), 65–72. https://doi.org/10.4266/acc.2018.00157

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bahar, I., Elay, G., Başkol, G., Sungur, M., & Donmez-Altuntas, H. (2018). Increased DNA damage and increased apoptosis and necrosis in patients with severe sepsis and septic shock. Journal of Critical Care, 43, 271–275. https://doi.org/10.1016/j.jcrc.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  14. Malik, Q., & Herbert, K. E. (2012). Oxidative and non-oxidative DNA damage and cardiovascular disease. Free Radical Research, 46(4), 554–564. https://doi.org/10.3109/10715762.2012.663913

    Article  CAS  PubMed  Google Scholar 

  15. Mikhed, Y., Daiber, A., & Steven, S. (2015). Mitochondrial oxidative stress, mitochondrial DNA damage and their role in age-related vascular dysfunction. International Journal of Molecular Sciences, 16(7), 15918–15953. https://doi.org/10.3390/ijms160715918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trajano, L. A. S. N., Trajano, E. T. L., Silva, M. A. S., Stumbo, A. C., Mencalha, A. L., & Fonseca, A. S. (2018). Genomic stability and telomere regulation in skeletal muscle tissue. Biomedicine & Pharmacotherapy, 98, 907–915. https://doi.org/10.1016/j.biopha.2018.01.004

    Article  CAS  Google Scholar 

  17. da Silva Sergio, L. P., Mencalha, A. L., de Souza da Fonseca, A., & de Paoli, F. (2019). DNA repair and genomic stability in lungs affected by acute injury. Biomedicine & Pharmacotherapy, 119, 109412. https://doi.org/10.1016/j.biopha.2019.109412

    Article  CAS  Google Scholar 

  18. Hyun, S. Y., & Jang, Y. J. (2015). p53 activates G1 checkpoint following DNA damage by doxorubicin during transient mitotic arrest. Oncotarget, 6(7), 4804–4815. https://doi.org/10.18632/oncotarget.3103

    Article  PubMed  Google Scholar 

  19. Beyfuss, K., & Hood, D. A. (2018). A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Report, 23(1), 1–18. https://doi.org/10.1080/13510002.2017.1416773

    Article  CAS  Google Scholar 

  20. Engeland, K. (2018). Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death and Differentiation, 25(1), 114–132. https://doi.org/10.1038/cdd.2017.172

    Article  CAS  PubMed  Google Scholar 

  21. Thrasher, P., Singh, M., & Singh, K. (2017). Ataxia-telangiectasia mutated kinase: Role in myocardial remodeling. Journal of Rare Diseases Research & Treatment, 2(1), 32–37.

    Article  Google Scholar 

  22. Xu, Y., Gao, P., Lv, X., Zhang, L., & Zhang, J. (2017). The role of the ataxia telangiectasia mutated gene in lung cancer: Recent advances in research. Therapeutic Advances in Respiratory Disease, 11(9), 375–380. https://doi.org/10.1177/1753465817725716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Souza da Fonseca, A., Mencalha, A. L., Araújo de Campos, V. M., Ferreira Machado, S. C., de Freitas Peregrino, A. A., Geller, M., & de Paoli, F. (2013). DNA repair gene expression in biological tissues exposed to low-intensity infrared laser. Lasers in Medical Science, 28(4), 1077–1084. https://doi.org/10.1007/s10103-012-1191-3

    Article  PubMed  Google Scholar 

  24. Trajano, E. T. L., Mencalha, A. L., Monte-Alto-Costa, A., Pôrto, L., & de Souza da Fonseca, A. (2014). Expression of DNA repair genes in burned skin exposed to low-level red laser. Lasers in Medical Science, 29(6), 1953–1957. https://doi.org/10.1007/s10103-014-1612-6

    Article  PubMed  Google Scholar 

  25. Trajano, L. A. S. N., Sergio, L. P. S., Silva, C. L., Carvalho, L., Mencalha, A. L., Stumbo, A. C., & Fonseca, A. S. (2016). Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts. Laser Physics Letters, 13(7), 075601. https://doi.org/10.1088/1612-2011/13/7/075601

    Article  CAS  Google Scholar 

  26. da Silva Neto Trajano, L. A., Trajano, E. T. L., da Silva Sergio, L. P., Teixeira, A. F., Mencalha, A. L., Stumbo, A. C., & de Souza da Fonseca, A. (2018). Photobiomodulation effects on mRNA levels from genomic and chromosome stabilization genes in injured muscle. Lasers in Medical Science, 33(7), 1513–1519. https://doi.org/10.1007/s10103-018-2510-0

    Article  PubMed  Google Scholar 

  27. Keshri, G. K., Yadav, A., Verma, S., Kumar, B., & Gupta, A. (2020). Effects of pulsed 810 nm Al–Ga–As diode laser on wound healing under immunosuppression: A molecular insight. Lasers in Surgery and Medicine, 52(5), 424–436. https://doi.org/10.1002/lsm.23156

    Article  PubMed  Google Scholar 

  28. da Silva Sergio, L. P., Thomé, A. M. C., da Silva Neto Trajano, L. A., Vicentini, S. C., Teixeira, A. F., Mencalha, A. L., de Paoli, F., & de Souza da Fonseca, A. (2018). Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats. Lasers in Medical Science, 34(1), 157–168. https://doi.org/10.1007/s10103-018-2656-9

    Article  PubMed  Google Scholar 

  29. Da Silva Neto Trajano, L. A., da Silva Sergio, L. P., de Oliveira, D. S. L., Trajano, E. T. L., dos Santos Silva, M. A., de Paoli, F., Mencalha, A. L., & de Souza da Fonseca, A. (2021). Low-power infrared laser modulates telomere length in heart tissue from an experimental model of acute lung injury. Photochemical & Photobiological Sciences, 20(5), 653–661. https://doi.org/10.1007/s43630-021-00051-9

    Article  CAS  Google Scholar 

  30. Tuby, H., Maltz, L., & Oron, U. (2006). Modulations of VEGF and iNOS in the rat heart by low level laser therapy are associated with cardioprotection and enhanced angiogenesis. Lasers in Surgery and Medicine, 38(7), 682–688. https://doi.org/10.1002/lsm.20377

    Article  PubMed  Google Scholar 

  31. Tuby, H., Maltz, L., & Oron, U. (2011). Induction of autologous mesenchymal stem cells in the bone marrow by low-level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers in Surgery and Medicine, 43(5), 401–409. https://doi.org/10.1002/lsm.21063

    Article  PubMed  Google Scholar 

  32. Sergio, L. P. S., Thomé, A. M. C., Trajano, L. A. S. N., Mencalha, A. L., da Fonseca, A. S., & de Paoli, F. (2018). Photobiomodulation prevents DNA fragmentation of alveolar epithelial cells and alters the mRNA levels of caspase 3 and Bcl-2 genes in acute lung injury. Photochemical & Photobiological Sciences, 17(7), 975–983. https://doi.org/10.1039/C8PP00109J

    Article  CAS  Google Scholar 

  33. Brown, D. L. (2017). Practical stereology applications for the pathologist. Veterinary Pathology, 54(3), 358–368. https://doi.org/10.1177/0300985817695781

    Article  PubMed  Google Scholar 

  34. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  35. Sun, Y., Cai, Y., & Zang, Q. S. (2019). Cardiac autophagy in sepsis. Cells, 8(2), 141. https://doi.org/10.3390/cells8020141

    Article  CAS  PubMed Central  Google Scholar 

  36. Arfaras-Melainis, A., Polyzogopoulou, E., Triposkiadis, F., Xanthopoulos, A., Ikonomidis, I., Mebazaa, A., & Parissis, J. (2019). Heart failure and sepsis: Practical recommendations for the optimal management. Heart Failure Reviews, 25(2), 183–194. https://doi.org/10.1007/s10741-019-09816-y

    Article  Google Scholar 

  37. Yndestad, A., Neurauter, C. G., Øie, E., Forstrøm, R. J., Vinge, L. E., Eide, L., Luna, L., Aukrust, P., & Bjørås, M. (2009). Up-regulation of myocardial DNA base excision repair activities in experimental heart failure. Mutation Research, 666(1–2), 32–38. https://doi.org/10.1016/j.mrfmmm.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  38. Hao, J., Du, H., Liu, F., Lu, J. C., Yang, X. C., & Cui, W. (2019). Apurinic/apyrimidinic endonuclease/redox factor 1 (APE1) alleviates myocardial hypoxia-reoxygenation injury by inhibiting oxidative stress and ameliorating mitochondrial dysfunction. Experimental and Therapeutic Medicine, 17(3), 2143–2151. https://doi.org/10.3892/etm.2019.7212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aonuma, T., Takehara, N., Maruyama, K., Kabara, M., Matsuki, M., Yamauchi, A., Kawabe, J.-I., & Hasebe, N. (2016). Apoptosis-resistant cardiac progenitor cells modified with apurinic/apyrimidinic endonuclease/redox factor 1 gene overexpression regulate cardiac repair after myocardial infarction. Stem Cells Translational Medicine, 5(8), 1067–1078. https://doi.org/10.5966/sctm.2015-0281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leszkiewicz, D. N., & Aizenman, E. (2003). Reversible modulation of GABA(A) receptor-mediated currents by light is dependent on the redox state of the receptor. European Journal of Neuroscience, 17(10), 2077–2083. https://doi.org/10.1046/j.1460-9568.2003.02656.x

    Article  PubMed  Google Scholar 

  41. Blackford, A. N., & Jackson, S. P. (2017). ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Molecular Cell, 66(6), 801–817. https://doi.org/10.1016/j.molcel.2017.05.015

    Article  CAS  PubMed  Google Scholar 

  42. Yoshioka, J. (2018). Ataxia telangiectasia mutated kinase is an autophagic balancer at the onset of heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 315(1), H80–H82. https://doi.org/10.1152/ajpheart.00270.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ding, Z., Wang, X., Liu, S., Shahanawaz, J., Theus, S., Fan, Y., Deng, X., Zhou, S., & Mehta, J. L. (2018). PCSK9 expression in the ischaemic heart and its relationship to infarct size, cardiac function, and development of autophagy. Cardiovascular Research, 114(13), 1738–1751. https://doi.org/10.1093/cvr/cvy128

    Article  CAS  PubMed  Google Scholar 

  44. Sciarretta, S., Maejima, Y., Zablocki, D., & Sadoshima, J. (2018). The role of autophagy in the heart. Annual Review of Physiology, 80, 1–26. https://doi.org/10.1146/annurev-physiol-021317-121427

    Article  CAS  PubMed  Google Scholar 

  45. Thrasher, P. R., Scofield, S. L. C., Dalal, S., Crawford, C. C., Singh, M., & Singh, K. (2018). Ataxia telangiectasia mutated kinase deficiency impairs the autophagic response early during myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology, 315(1), H48–H57. https://doi.org/10.1152/ajpheart.00042.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daniel, L. L., Scofield, S. L. C., Thrasher, P., Dalal, S., Daniels, C. R., Foster, C. R., Singh, M., & Singh, K. (2016). Ataxia telangiectasia-mutated kinase deficiency exacerbates left ventricular dysfunction and remodeling late after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 311(2), H445–H452. https://doi.org/10.1152/ajpheart.00338.2016

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gogiraju, R., Xu, X., Bochenek, M. L., Steinbrecher, J. H., Lehnart, S. E., Wenzel, P., Kessel, M., Zeisberg, E. M., Dobbelstein, M., & Schafer, K. (2015). Endothelial p53 deletion improves angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. Journal of the American Heart Association, 4(2), e001770–e001770. https://doi.org/10.1161/JAHA.115.001770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoshida, Y., Shimizu, I., Katsuumi, G., Jiao, S., Suda, M., Hayashi, Y., & Minamino, T. (2015). p53-induced inflammation exacerbates cardiac dysfunction during pressure overload. Journal of Cardiac Failure, 85(2015), 183–198. https://doi.org/10.1016/j.cardfail.2015.08.185

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Alexsandra da Silva Neto Trajano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. This study did not receive any funding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Neto Trajano, L.A., da Silva Sergio, L.P., de Oliveira, D.S.L. et al. Low-power infrared laser modulates mRNA levels from genes of base excision repair and genomic stabilization in heart tissue from an experimental model of acute lung injury. Photochem Photobiol Sci 21, 1299–1308 (2022). https://doi.org/10.1007/s43630-022-00221-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-022-00221-3

Keywords

Navigation