Skip to main content
Log in

Effects of reinforcements in Al 5052 and AZ31B explosively weld composites

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this study, aluminium (Al 5052)/magnesium (AZ31B) composites were fabricated with and without wire mesh (SS 304) and different amounts of silicon carbide particles (1% and 2% SiCp of weight of the flyer plate) as reinforcements through explosive welding at varying loading ratios (R = 0.7–0.9). The melted layer, pore, and crack formed near the interface of the Al 5052/AZ31B weld and wire mesh reinforced weld, whereas no such defects were found in the silicon carbide reinforced weld. AlFe3, FeSi, and Al12Mg17 intermetallics were detected near the interface in wire mesh-reinforced welds. On the contrary, in SiCp-reinforced welds, intermetallic development was suppressed because the addition of reinforcement enhanced the utilization of kinetic energy and inhibited intermetallic development. The maximum microhardness was found close to the interface for attempted conditions. Higher tensile (234 MPa) and shear (135 MPa) strengths were obtained in wire mesh with a 1% SiCp reinforced explosive weld. The corrosion rate of fabricated composites is not significant, so they can be utilized in corrosive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data are available on reasonable request from the corresponding authors.

References

  1. Zhang N, Wang WX, Cao XQ, Wu JQ. The effect of annealing on the interface microstructure and mechanical characteristics of AZ31B/6061 composite plates fabricated by explosive welding. Mater Des. 2015;65:1100–9. https://doi.org/10.1016/j.matdes.2014.08.025.

    Article  Google Scholar 

  2. Liu FC, Liang W, Li XR, Zhao XG, Zhang Y, Wang HX. Improvement of corrosion resistance of pure magnesium via vacuum pack treatment. J Alloys Compd. 2008;461:399–403. https://doi.org/10.1016/j.jallcom.2007.06.097.

    Article  Google Scholar 

  3. Rajmohan T, Palanikumar K, Ranganathan S. Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Trans Nonferrous Met Soc. 2013;23:2509–17. https://doi.org/10.1016/S1003-6326(13)62762-4.

    Article  Google Scholar 

  4. Anbuchezhiyan G, Mohan B, Kathiresan S, Pugazenthi R. Influence of microstructure and mechanical properties of TiC reinforced magnesium nano composites. Mater Today Proc. 2020;27(2):1530–4. https://doi.org/10.1016/j.matpr.2020.03.176.

    Article  Google Scholar 

  5. Majzoobi GH, Rahmani K. Mechanical characterization of Mg-B4C nanocomposite fabricated at different strain rates. Int J Miner Metall. 2020;27:252–63. https://doi.org/10.1007/s12613-019-1902-x.

    Article  Google Scholar 

  6. Rahmany-Gorji R, Alizadeh A, Jafari H. Microstructure and mechanical properties of stir cast ZX51/Al2O3p magnesium matrix composites. Mater Sci Eng A. 2016;674:413–8. https://doi.org/10.1016/j.msea.2016.07.057.

    Article  Google Scholar 

  7. Baraniraj A, Sathiyagnanam AP, Venkatesh R, Aravind Ra. Silicon Carbide Particle Enriched Magnesium Alloy (AZ91) Composite: Physical, Microstructural and Mechanical Studies. Silicon. 2023;15: 6367–74. https://doi.org/10.1007/s12633-023-02516-1.

  8. Alaneme KK, Adewale TM, Olubambi PA. Corrosion and wear behaviour of Al–Mg–Si alloy matrix hybrid composites reinforced with rice husk ash and silicon carbide. J Mater Res Technol. 2014;3(1):9–16. https://doi.org/10.1016/j.jmrt.2013.10.008.

    Article  Google Scholar 

  9. Tu JP, Yang YZ. Tribological behaviour of Al18B4O33-whisker-reinforced hypoeutectic Al–Si–Mg-matrix composites under dry sliding conditions. Compos Sci Technol. 2000;60:1801–9.

    Article  Google Scholar 

  10. Zhou P, Zhang S, Li M, Wang H, Cheng W, Wang L, Li H, Liang W, Liu Y. The creep behavior of Mg–9Al–1Si–1SiC composite at elevated temperature. J Magnes Alloy. 2020;8:944–51.

    Article  Google Scholar 

  11. Prakash KS, Balasundar P, Nagaraja S, Gopal PM, Kavimani V. Mechanical and wear behaviour of Mg–SiC–Gr hybrid composites. J Magnes Alloy. 2016;4:197–206.

    Article  Google Scholar 

  12. Kavimani V, Prakash KS. Tribological behaviour predictions of r-GO reinforced Mg composite using ANN coupled Taguchi approach. J Phys Chem Solids. 2017;110:409–19.

    Article  Google Scholar 

  13. Meher A, Mahapatra MM, Samal P, Vundavilli PR. Study on effect of TiB2 reinforcement on the microstructural and mechanical properties of magnesium RZ5 alloy based metal matrix composites. J Magnes Alloy. 2020;8:780–92.

    Article  Google Scholar 

  14. Fronczek DM, Chulist R, Dobrzynska LL, Kac S, Schell N, Kania Z. Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater Des. 2017;130:120–30.

    Article  Google Scholar 

  15. Singh R, Chauhan S, Gope PC. Influence of notch radius and strain rate on the mechanical properties and fracture behavior of TIG-welded 6061 aluminum alloy. Arch Civ Mech Eng. 2016;16:513–23. https://doi.org/10.1016/j.acme.2016.01.002.

    Article  Google Scholar 

  16. Ambroziak A. Investigations of the friction welding of Incoloy MA 956 alloy. Arch Civ Mech Eng. 2010;10:5–13. https://doi.org/10.1016/S1644-9665(12)60047-8.

    Article  Google Scholar 

  17. Katiyar BS, Panda SK, Saha P. Experimental and numerical analyses on crushing behaviour of drawn cups of laser welded tailored blanks under axial loading. Arch Civ Mech Eng. 2022;22:211. https://doi.org/10.1007/s43452-022-00537-y.

    Article  Google Scholar 

  18. Solecka M, Mroz S, Petrzak P, Mania I, Szota P, Stefanik A, Garstka T, Paul H. Microstructure-related properties of explosively welded multi-layer Ti/ Al composites after rolling and annealing. Arch Civ Mech Eng. 2023;23:39. https://doi.org/10.1007/s43452-022-00577-4.

    Article  Google Scholar 

  19. Robin LG, Raghukandan K, Saravanan S. Studies on wire-mesh and silicon carbide particle reinforcements in explosive cladding of Al 1100-Al 5052 sheets. J Manuf Process. 2020;56:887–97. https://doi.org/10.1016/j.jmapro.2020.05.056.

    Article  Google Scholar 

  20. Saravanan S, Raghukandan K, Kumar P. Effect of wire mesh interlayer in explosive cladding of dissimilar grade aluminum plates. J Cent South Univ. 2019;26:604–11. https://doi.org/10.1007/s11771-019-4031-9.

    Article  Google Scholar 

  21. Saravanan S, Inokawa H, Tomoshige R, Raghukandan K. Microstructural characterization of silicon carbide reinforced dissimilar grade aluminium explosive clads. Def Technol. 2020;16(3):689–94. https://doi.org/10.1016/j.dt.2019.10.008.

    Article  Google Scholar 

  22. Yan YB, Zhang ZW, Shen W, Wang JH, Zhang LK, Chin BA. Microstructure and properties of magnesium AZ31B–aluminum 7075 explosively welded composite plate. Mater Sci Eng. 2010;527:2241–5.

    Article  Google Scholar 

  23. Zeng X, Wang Y, Li X, Li XJ, Zhao T. Effect of inert gas-shielding on the interface and mechanical properties of Mg/Al explosive welding composite plate. J Manuf Process. 2019;45:166–75. https://doi.org/10.1016/j.jmapro.2019.07.007.

    Article  Google Scholar 

  24. Inao D, Mori A, Tanaka S, Hokamoto K. Explosive welding of thin aluminum plate onto magnesium alloy plate using a gelatin layer as a pressure-transmitting medium. Met. 2020;10(1):106. 10. 3390/met10 010106.

  25. Chen P, Feng J, Zhou Q, An E, Li J, Yuan Y, Sanli Ou. Investigation on the Explosive Welding of 1100 Aluminum Alloy and AZ31 Magnesium Alloy. JMEPEG. 2016;25:2635–41. https://doi.org/10.1007/s11665-016-2088-2.

    Article  Google Scholar 

  26. Kumar P, Ghosh SK, Saravanan S, Barma JD. Experimental and simulation studies on explosive welding of AZ31B-Al 5052 alloys. Int J Adv Manuf Technol. 2023;127:2387–99. https://doi.org/10.1007/s00170-023-11684-8.

    Article  Google Scholar 

  27. Manikandan P, Hokamoto K, Fujita M, Raghukandan K, Tomoshige R. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel. J Mater Process Technol. 2008;195:232–40. https://doi.org/10.1016/J.JMATPROTEC.2007.05.002.

    Article  Google Scholar 

  28. Akhtar M, Khajuria A. The synergistic effects of boron and impression creep testing during paced controlling of temperature for P91 steels. Adv Eng Mater. 2023. https://doi.org/10.1002/adem.202300053.

    Article  Google Scholar 

  29. Acarer M, Demir B, Dikici B, Salur E. Microstructure, mechanical properties, and corrosion resistance of an explosively welded Mg–Al composite. J Magnes Alloy. 2022;10(4):1086–95. https://doi.org/10.1016/j.jma.2021.08.009.

    Article  Google Scholar 

  30. Saravanan S, Raghukandan K, Hokamoto K. Improved microstructure and mechanical properties of dissimilar explosive cladding by means of interlayer technique. Arch Civ Mech Eng. 2016;16(4):563–8. https://doi.org/10.1016/j.acme.2016.03.009.

    Article  Google Scholar 

  31. Saravanan S, Raghukandan K. Thermal kinetics in explosive cladding of dissimilar metals. Sci Technol Weld Join. 2012;17(2):99–103. https://doi.org/10.1179/1362171811Y.0000000080.

    Article  Google Scholar 

  32. Bataev IA, Lazurenko DV, Tanaka S, Hokamoto K, Guo Y. High cooling rates and metastable phases at the interfaces of explosively welded materials. Acta Mater. 2017;135:277–89. https://doi.org/10.1016/J.ACTAMAT.2017.06.038.

    Article  Google Scholar 

  33. Tamilchelvan P, Raghukandan K, Saravanan S. Kinetic energy dissipation in TI-SS explosive cladding with multi loading ratios. Iran J Sci Technol – Trans Mech Eng. 2014; 38:91–96.

  34. Gulenç B, Kaya Y, Durgutlu A, Gulenç IT, Yıldırım MS, Kahraman N. Production of wire reinforced composite materials through explosive welding. Arch Civ Mech Eng. 2016;16(1):1–8. https://doi.org/10.1016/j.acme.2015.09.006.

    Article  Google Scholar 

  35. Saravanan S, Inokawa H, Tomoshige R, Raghukandan K. Effect of silicon carbide particles in microstructure and mechanical properties of dissimilar aluminium explosive cladding. J Manuf Process. 2019;47:32–40. https://doi.org/10.1016/j.jmapro.2019.09.027.

    Article  Google Scholar 

  36. Yadav AP, Katayama H, Noda K, Masuda H, Nishikata A, Tsuru T. Effect of Fe–Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments. Corros Sci. 2007;49(9):3716–31. https://doi.org/10.1016/j.corsci.2007.03.039.

    Article  Google Scholar 

  37. Bazarnik P, Adamczyk-Cieślak B, Gałka A, Płonka B, Snieżek L, Cantoni M. Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/ AA1050/AA2519 laminates manufactured by explosive welding. Mater Des. 2016;111:146–57. https://doi.org/10.1016/j.matdes.2016.08.088.

    Article  Google Scholar 

  38. Akhtar M, Khajuria A, Sahu JK, Swaminathan J, Kumar R, Bedi R, Albert SK. Phase transformations and numerical modelling in simulated HAZ of nanostructured P91B steel for high temperature applications. Appl Nanosci. 2018;8:1669–85. https://doi.org/10.1007/s13204-018-0854-1.

    Article  Google Scholar 

  39. Carvalho GHSFL, Galvao I, Mendes R, Leal RM, Loureiro A. Friction stir welding and explosive welding of aluminum/copper: process analysis. Mater Manuf Process. 2019;34(11):1243–50. https://doi.org/10.1080/10426914.2019.1644452.

  40. Sathyanarayan, Tanaka S, Mori A, Hokamoto K. Welding of Sn and Cu plates using controlled underwater shock wave. J Mater Process Technol. 2017;245:300–8. https://doi.org/10.1016/j.jmatprotec.2017.02.030.

  41. Saravanan S, Raghukandan K. Effect of silicon carbide and wire-mesh reinforcements in dissimilar grade aluminium explosive clad composites. Def Technol. 2020;16(6):1160–6. https://doi.org/10.1016/J.DT.2019.12.009.

    Article  Google Scholar 

  42. Kahraman N, Gulenc B, Findik F. Corrosion and mechanical-microstructural aspects of dissimilar joints of Ti-6Al-4V and Al plates. Int J Impact Eng. 2007;34(8):1423–32. https://doi.org/10.1016/j.ijimpeng.2006.08.003.

    Article  Google Scholar 

  43. Pardo A, Merino S, Merino MC, Barroso I, Mohedano M, Arrabal R, Viejo F. Corrosion behaviour of silicon–carbide-particle reinforced AZ92 magnesium alloy. Corros Sci. 2009;51:841–9. https://doi.org/10.1016/j.corsci.2009.01.024.

    Article  Google Scholar 

  44. Ding Q, Das H, Upadhyay P, Sousa BC, Karayagiz K, Powell A, Mishra B. Microstructural, corrosion, and mechanical characterization of friction stir welded Al 6022-to-ZEK100 Mg joints. Corros Mater Degrad. 2023;4(1):142–57. https://doi.org/10.3390/cmd4010009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Ghosh, S.K., Saravanan, S. et al. Effects of reinforcements in Al 5052 and AZ31B explosively weld composites. Archiv.Civ.Mech.Eng 24, 133 (2024). https://doi.org/10.1007/s43452-024-00940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00940-7

Keywords

Navigation