Skip to main content
Log in

Influence of In-house Synthesized Micro-Aegle Marmelos Polymer Concentration on Physico-Mechanical Properties of Aluminum-Based Composites

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For lightweight applications such as aircraft, automotive components, household, and infrastructure applications, using natural polymer fillers as reinforcement in aluminum metal matrix composites (MMCs) instead of metallic and ceramic fillers could be an attractive candidate. Therefore, the present work newly investigated the synthesis of Aegle Marmelos polymer powders (AMP) via a chemical route, followed by the fabrication of AMP-reinforced aluminum MMCs by the powder metallurgy (P/M) technique. The AMP concentration is increased in increments of 5% by weight up to 35%. The SEM results showed that the fillers are homogeneously distributed in the matrix and the bonding between them is improved. The mechanical characterization results showed that at an AMP concentration of 20 wt%, the density, hardness, and tensile strength were increased by 13%, 6.35%, and 44%, respectively, compared to the base material. In addition, a wear test is performed on the synthesized composites and the responses such as coefficient of friction and specific wear rate are individually optimized using the Taguchi approach. The common optimal parameters for the minimum coefficient of friction (0.3832) and the specific wear rate (7.83 × 10−5 mm3/Nm) are 20 wt% AMP reinforcement, sliding load 20 N, disk speed 550 rpm, and sliding time 5 min. The results of the confirmatory wear test showed that the difference between Taguchi's predicted and experimental response values ​​is less than 9%. Analysis of variance results also showed that AMP reinforcement is the most significant parameter. Overall, Al-20 wt% AMP composites exhibited improved physico-mechanical properties for promising applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. Parikh, V.K.; Badheka, V.J.; Badgujar, A.D.; Ghetiya, N.D.: Fabrication and processing of aluminum alloy metal matrix composites. Mater. Manuf. Process. 36(14), 1604–1617 (2021). https://doi.org/10.1080/10426914.2021.1914848

    Article  Google Scholar 

  2. Kumar Sharma, A.; Bhandari, R.; Aherwar, A.; Rimašauskienė, R.; Pinca-Bretotean, C.: A study of advancement in application opportunities of aluminum metal matrix composites. Mater. Today: Proc. 26, 2419–2424 (2020). https://doi.org/10.1016/j.matpr.2020.02.516

    Article  Google Scholar 

  3. Bhoi, N.K.; Singh, H.; Pratap, S.: Developments in the aluminum metal matrix composites reinforced by micro/nano particles—A review. J. Compos. Mater. 54(6), 813–833 (2020). https://doi.org/10.1177/0021998319865307

    Article  Google Scholar 

  4. Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M.: Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J. Manuf. Process. 59, 131–152 (2020). https://doi.org/10.1016/j.jmapro.2020.09.010

    Article  Google Scholar 

  5. Kareem, A.; Qudeiri, J.A.; Abdudeen, A.; Ahammed, T.; Ziout, A.: A review on AA 6061 metal matrix composites produced by stir casting. Materials. 14(1), 175 (2021). https://doi.org/10.3390/ma14010175

    Article  Google Scholar 

  6. Cao, L.; Chen, B.; Wan, J.; Kondoh, K.; Guo, B.; Shen, J.; Li, J.S.: Superior high-temperature tensile properties of aluminum matrix composites reinforced with carbon nanotubes. Carbon 191, 403–414 (2022). https://doi.org/10.1016/j.carbon.2022.02.009

    Article  Google Scholar 

  7. Hassan, A.M.; Almomani, M.; Qasim, T.; Ghaithan, A.: Effect of processing parameters on friction stir welded aluminum matrix composites wear behavior. Mater. Manuf. Process. 27(12), 1419–1423 (2012). https://doi.org/10.1080/10426914.2012.700156

    Article  Google Scholar 

  8. Islam, M.U.; Wallace, W.: Carbon fibre reinforced aluminum matrix composites. A critical review. Adv. Mater. Manuf. Process 3(1), 1–35 (1988)

    Google Scholar 

  9. Rack, H.J.: Fabrication of high performance powder-metallurgy aluminum matrix composites. Adv. Mater. Manuf. Process. 3(3), 327–358 (2007). https://doi.org/10.1080/08842588708953210

    Article  Google Scholar 

  10. Hajjari, E.; Divandari, M.; Arabi, H.: Effect of applied pressure and nickel coating on microstructural development in continuous carbon fiber-reinforced aluminum composites fabricated by squeeze casting. Mater. Manuf. Process. 26(4), 599–603 (2011). https://doi.org/10.1080/10426910903447311

    Article  Google Scholar 

  11. Kucukyildirim, B.O.; AkdoganEker, A.: Fabrication of carbon nanotube reinforced aluminum alloy composites by vacuum-assisted infiltration technique. J. Compos. Mater. 55(16), 2225–2235 (2021). https://doi.org/10.1177/0021998320988320

    Article  Google Scholar 

  12. Yu, X.; Gong, W.; Wu, H.; Duan, L.: Mechanical and microstructural analysis of exfoliated graphite nanoplatelets-reinforced aluminum matrix composites synthesized via friction stir processing. Arab. J. Sci. Eng. 48(3), 3009–3019 (2023). https://doi.org/10.1007/s13369-022-07051-6

    Article  Google Scholar 

  13. Surya, M.S.; Gugulothu, S.K.: Fabrication, mechanical and wear characterization of silicon carbide reinforced aluminum 7075 metal matrix composite. SILICON 14(5), 2023–2032 (2022). https://doi.org/10.1007/s12633-021-00992-x

    Article  Google Scholar 

  14. Rao, V.; Periyaswamy, P.; Bejaxhin, A.B.H.; Naveen, E.; Ramanan, N.; Teklemariam, A.: Wear behavioral study of hexagonal boron nitride and cubic boron nitride-reinforced aluminum mmc with sample analysis. J. Nanomater. 2022, 1–10 (2022). https://doi.org/10.1155/2022/7816372

    Article  Google Scholar 

  15. Liu, Z.; Zhu, T.; Jia, Y.; Song, D.; Zhou, N.; Zheng, K.: Preparation of in-situ TiB2 reinforced aluminum matrix composites assisted by two steps of ultrasonic vibration. Mater Res Express. 8(4), 046506 (2021). https://doi.org/10.1088/2053-1591/abea5a

    Article  Google Scholar 

  16. Veeresh Kumar, G.B.; Pramod, R.; Hari Kiran Reddy, R.; Ramu, P.; KunaalKumar, B.; Madhukar, P.; Chavali, M.; Mohammad, F.; Khiste, S.K.: Investigation of the tribological characteristics of aluminum 6061-reinforced titanium carbide metal matrix composites. Nanomaterials. 11(11), 3039 (2021). https://doi.org/10.3390/nano11113039

    Article  Google Scholar 

  17. Paul, T.; Zhang, C.; Denis, N.; Boesl, B.; Agarwal, A.: Role of ultrasonic treatment on microstructure, mechanical and tribological behavior of 2D boron nitride reinforced aluminum composites. Mater. Sci. Eng: A 809, 140970 (2021). https://doi.org/10.1016/j.msea.2021.140970

    Article  Google Scholar 

  18. Yu, H.; Zhang, S.Q.; Xia, J.H.; Su, Q.; Ma, B.C.; Wu, J.H.; Zhou, J.X.; Wang, X.T.; Hu, L.X.: Microstructural evolution, mechanical and physical properties of graphene reinforced aluminum composites fabricated via powder metallurgy. Mater. Sci. Eng.: A 802, 140669 (2021). https://doi.org/10.1016/j.msea.2020.140669

    Article  Google Scholar 

  19. Salur, E.; Aslan, A.; Kuntoğlu, M.; Acarer, M.: Effect of ball milling time on the structural characteristics and mechanical properties of nano-sized Y2O3 particle reinforced aluminum matrix composites produced by powder metallurgy route. Adv. Powder Technol. 32(10), 3826–3844 (2021). https://doi.org/10.1016/j.apt.2021.08.031

    Article  Google Scholar 

  20. Nayak, K.C.; Rane, K.K.; Date, P.P.; Srivatsan, T.S.: Synthesis of an aluminum alloy metal matrix composite using powder metallurgy: role of sintering parameters. Appl. Sci. 12(17), 8843 (2022). https://doi.org/10.3390/app12178843

    Article  Google Scholar 

  21. Khanal, A.; Dallacqua, S.; Adhikari, R.: Bael (Aegle marmelos), an underutilized fruit with enormous potential to be developed as a functional food product: a review. J. Food Process. Preserv. 2023, 1–11 (2023). https://doi.org/10.1155/2023/8863630

    Article  Google Scholar 

  22. Chakraborty, J.; Dash, S.: Optimization and characterization of purified gummy polysaccharide isolated from Aegle Marmelos fruit pulp as a novel pharmaceutical excipient. Int J Pharm Sci 6(1), 777–789 (2014)

    Google Scholar 

  23. Sharma, P.C.; Bhatia, V.; Bansal, N.; Sharma, A.: A review on Bael tree. NIScPR Online Periodicals Repository. 6(2), 171–178 (2007)

    Google Scholar 

  24. Sharma, M.; Bains, A.; Goksen, G.; Sridhar, K.; Sharma, M.; Mousavi Khaneghah, A.; Chawla, P.: Bioactive polysaccharides from Aegle marmelos fruit: Recent trends on extraction, bio-techno functionality, and food applications. Food Sci. Nutr. (2024). https://doi.org/10.1002/fsn3.4026

    Article  Google Scholar 

  25. Fang, J.; Wang, Z.; Wang, P.; Wang, M.: Extraction, structure and bioactivities of the polysaccharides from Ginkgo biloba: a review. Int. J. Biol. Macromol. 162, 1897–1905 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.141

    Article  Google Scholar 

  26. Jindal, M.; Kumar, V.; Rana, V.; Tiwary, A.K.: Exploring potential new gum source Aegle marmelos for food and pharmaceuticals: physical, chemical and functional performance. Ind. Crops Prod. 45, 312–318 (2013). https://doi.org/10.1016/j.indcrop.2012.12.037

    Article  Google Scholar 

  27. Castro, K.C.; Campos, M.G.N.; Mei, L.H.I.: Hyaluronic acid electrospinning: challenges, applications in wound dressings and new perspectives. Int. J. Biol. Macromol. 173, 251–266 (2021). https://doi.org/10.1016/j.ijbiomac.2021.01.100

    Article  Google Scholar 

  28. Chao, Y.; Liu, Y.; Xu, Z.; Xie, W.; Zhang, L.; Ouyang, W.; Wu, H.; Pan, Z.; Jiao, J.; Li, S.; Zhang, G.; Zhang, W.; Sheng, L.: Improving superficial microstructure and properties of the laser-processed ultrathin kerf in Ti-6Al-4V alloy by water-jet guiding. J. Mater. Sci. Technol. 156, 32–53 (2023). https://doi.org/10.1016/j.jmst.2022.11.058

    Article  Google Scholar 

  29. Sheng, L.Y.; Guo, J.T.; Xi, T.F.; Zhang, B.C.; Ye, H.Q.: ZrO2 strengthened NiAl/Cr(Mo, Hf) composite fabricated by powder metallurgy. Prog. Nat. Sci. 22(3), 231–236 (2012). https://doi.org/10.1016/j.pnsc.2012.04.003

    Article  Google Scholar 

  30. Sheng, L.Y.; Yang, F.; Xi, T.F.; Guo, J.T.; Ye, H.Q.: Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion. Mater. Sci. Eng. A 555, 131–138 (2012). https://doi.org/10.1016/j.msea.2012.06.042

    Article  Google Scholar 

  31. Khoshghadam-Pireyousefan, M.; Rahmanifard, R.; Orovcik, L.; Švec, P.; Klemm, V.: Application of a novel method for fabrication of graphene reinforced aluminum matrix nanocomposites: synthesis, microstructure, and mechanical properties. Mater Sci Eng: A 772, 138820 (2020). https://doi.org/10.1016/j.msea.2019.138820

    Article  Google Scholar 

  32. Khdair, A.I.; Fathy, A.: Enhanced strength and ductility of Al-SiC nanocomposites synthesized by accumulative roll bonding. J. Mater. Res. Technol. 9(1), 478–489 (2020). https://doi.org/10.1016/j.jmrt.2019.10.077

    Article  Google Scholar 

  33. Sheng, L.Y.; Yang, F.; Guo, J.T.; Xi, T.F.; Ye, H.Q.: Investigation on NiAl–TiC–Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion. Compos. B Eng. 45(1), 785–791 (2013). https://doi.org/10.1016/j.compositesb.2012.05.038

    Article  Google Scholar 

  34. Sheng, L.Y.; Yang, F.; Xi, T.F.; Guo, J.T.: Investigation on microstructure and wear behavior of the NiAl–TiC–Al2O3 composite fabricated by self-propagation high-temperature synthesis with extrusion. J. Alloys Compd. 554, 182–188 (2013). https://doi.org/10.1016/j.jallcom.2012.11.144

    Article  Google Scholar 

  35. Zhang, L.; Ouyang, W.; Wu, H.; Qin, X.; Zhang, S.; Xie, W.; Jiang, S.; Zhang, W.; Sheng, L.: Microstructure and high-temperature tribological properties of Ti–6Al–4V alloy treated by laser shock peening. J Mater. Res. Technol. 29, 4129–4145 (2024). https://doi.org/10.1016/j.jmrt.2024.02.132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjeet Kumar Sahu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veeranaath, V., Sahu, R.K. & Priya, I.M. Influence of In-house Synthesized Micro-Aegle Marmelos Polymer Concentration on Physico-Mechanical Properties of Aluminum-Based Composites. Arab J Sci Eng (2024). https://doi.org/10.1007/s13369-024-09072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13369-024-09072-9

Keywords

Navigation