Skip to main content

Advertisement

Log in

Investigation of Microstructural and Mechanical Properties of Dissimilar Metal Weld Between AISI 420 and AISI 1018 STEELS

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present study revealed that the martensitic stainless steel AISI 420 and mild/low carbon steel AISI 1018 could be successfully joined by using friction welding technique at different parameters such as friction time and friction pressure. Macro and microstructural characterizations of welded materials were performed by optical microscope (OM), X-ray diffractometer (XRD) and scanning electron microscope with energy-dispersive X-ray spectroscop. Also, tensile and microhardness tests were performed to determine the mechanical properties. The most interesting aspect of this study is the determination of ferrite, retained austenite and chromium phases in the weld zone by XRD analysis, and in tensile tests, the fracture occurred outside the weld zone at a maximum tensile strength of 527 MPa. Moreover, the diffusions of phases such as chromium and carbon were observed in the weld zone, and the microhardness measured in the weld zone was found to be higher with 591 HV than the one measured in the base materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

taken from the welded sample S5

Fig. 8
Fig. 9

taken from the welded sample S5

Fig. 10

taken from the HAZ of S5

Fig. 11

taken from HAZ of S5

Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Stout, R.D.: Weldability of Steels, 4th edn. Welding Research Council, New York, USA (1987)

    Google Scholar 

  2. Cary, H.B.: Modern Welding Technology, 6th edn. Prentice-Hall Inc, New Jersey (1999)

    Google Scholar 

  3. Kou, S.: Welding Metallurgy, 2nd edn. Wiley, New Jersey, USA (2003)

    Google Scholar 

  4. ASM: ASM Metals Handbook, ASM International. 8th. Materials Park, OH. P. (1973)

  5. Demo, J.J.: Structure, Constitution, and General Characteristics of Wrought Ferritic Stainless Steels. ASTM International, Pennsylvania (1977)

    Book  Google Scholar 

  6. Castro, R.; de Cadanet, J.: Welding Metallurgy of Stainless and Heat-Resisting Steels. CUP Archive, Cambridge (1975)

    Google Scholar 

  7. Arivazhagan, N.; Singh, S.; Prakash, S.; Reddy, G.: High temperature corrosion studies on friction-welded dissimilar metals. Mater. Sci. Eng. B 132, 222–227 (2006)

    Article  Google Scholar 

  8. Badaruddin, M.; Wardono, H.; Supriadi, H.; Salimor, M.: Experimental investigation of mechanical properties of cold-drawn AISI 1018 steel at high-temperature steady-state conditions. J. Market. Res. 9, 1893–1904 (2020)

    Google Scholar 

  9. Chalmers, R.E.: The friction welding advantage. Manuf. Eng. 126, 64–64 (2001)

    Google Scholar 

  10. Meshram, S.; Mohandas, T.; Reddy, G.M.: Friction welding of dissimilar pure metals. J. Mater. Process. Technol. 184, 330–337 (2007)

    Article  Google Scholar 

  11. Sathiya, P.; Aravindan, S.; Haq, A.N.: Some experimental investigations on friction welded stainless steel joints. Mater. Des. 29, 1099–1109 (2008)

    Article  Google Scholar 

  12. Pasic, O.; Hajro, I.; Hodzic, D.: Welding of dissimilar metals-status requirement, and trend of development. Weld World 51, 377 (2007)

    Google Scholar 

  13. Mehl, R.F.; Lyman, T.; Committee, A.H.: Atlas of Microstructures of Industrial Alloys. (1972)

  14. Isfahany, A.N.; Saghafian, H.; Borhani, G.: The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J. Alloy. Compd. 509, 3931–3936 (2011)

    Article  Google Scholar 

  15. Chen, Y.-W.; Huang, B.-M.; Tsai, Y.-T.; Tsai, S.-P.; Chen, C.-Y.; Yang, J.-R.: Microstructural evolutions of low carbon Nb/Mo-containing bainitic steels during high-temperature tempering. Mater. Charact. 131, 298–305 (2017)

    Article  Google Scholar 

  16. Taban, E.; Gould, J.E.; Lippold, J.C.: Dissimilar friction welding of 6061–T6 aluminum and AISI 1018 steel: properties and microstructural characterization. Mater. Des. 1980–2015(31), 2305–2311 (2010)

    Article  Google Scholar 

  17. Ozan, S.: Torsional behavior of AISI 420/AISI 4340 steel friction welds. Mater. Test 56, 891–896 (2014)

    Article  Google Scholar 

  18. Ren, F.; Chen, F.; Chen, J.; Tang, X.: Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel. J. Manuf. Process. 31, 640–649 (2018)

    Article  Google Scholar 

  19. Kimura, M.; Iijima, T.; Kusaka, M.; Kaizu, K.; Fuji, A.: Joining phenomena and tensile strength of friction welded joint between Ti–6Al–4V titanium alloy and low carbon steel. J. Manuf. Process. 24, 203–211 (2016)

    Article  Google Scholar 

  20. Batı, S.; Kılıç, M.; Kırık, İ: Friction welding of dissimilar AISI 304 and AISI 8640 steels. Eur. J. Tech. 6, 79–86 (2016)

    Google Scholar 

  21. Kimura, M.; Kasuya, K.; Kusaka, M.; Kaizu, K.; Fuji, A.: Effect of friction welding condition on joining phenomena and joint strength of friction welded joint between brass and low carbon steel. Sci. Technol. Weld. Join. 14, 404–412 (2009)

    Article  Google Scholar 

  22. Paventhan, R.; Lakshminarayanan, P.; Balasubramanian, V.: Optimization of friction welding process parameters for joining carbon steel and stainless steel. J. Iron Steel Res. Int. 19, 66–71 (2012)

    Article  Google Scholar 

  23. Khdir, Y.K.; Kako, S.A.; Gardi, R.H.: Study of welding dissimilar metals–low-carbon steel AISI 1018 and austenitic stainless steel AISI 304. Polytech. J. 10, 1–5 (2020)

    Article  Google Scholar 

  24. Ma, H.; Qin, G.; Geng, P.; Wang, S.; Zhang, D.: Microstructural characterisation and corrosion behaviour of aluminium alloy/steel hybrid structure produced by friction welding. J. Manuf. Process. 61, 349–356 (2021)

    Article  Google Scholar 

  25. ASTM E407–99: Standard Practice for Microetching Metals and Alloys, vol. 3. American Society for Testing and Materials Annual Book of Standards (1999)

  26. Jiang, W.; Kovacevic, R.: Feasibility study of friction stir welding of 6061–T6 aluminium alloy with AISI 1018 steel. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 218, 1323–1331 (2004)

    Article  Google Scholar 

  27. ASTM E92–82: Standard Test Method for Vickers Hardness of Metallic Materials. ASTM international, Pennsylvania (1989)

  28. ASTM: ASTM-E8: Standard Test Methods for Tension Testing of Metallic Materials. ASTM international, West Conshohocken, PA (2008)

  29. Adin, M.Ş; Kılıçkap, E.: Strength of double-reinforced adhesive joints. Mater. Test. 63, 176–181 (2021)

    Article  Google Scholar 

  30. Celik, S.; Ersozlu, I.: Investigation of the mechanical properties and microstructure of friction welded joints between AISI 4140 and AISI 1050 steels. Mater. Des. 30, 970–976 (2009)

    Article  Google Scholar 

  31. Kumar, N.N.; Ram, G.J.; Bhattacharya, S.; Dey, H.; Albert, S.: Spark plasma welding of austenitic stainless steel AISI 304L to commercially pure titanium. Trans. Indian Inst. Met. 68, 289–297 (2015)

    Article  Google Scholar 

  32. Mohammed, M.; Omar, M.; Sajuri, Z.; Al-Zubaidi, S.: Characterization of metallurgical and mechanical properties of thixowelded AISI D2 and AISI 304 steels. J. Mater. Eng. Perform. 29, 739–749 (2020)

    Article  Google Scholar 

  33. Saeidi, K.; Zapata, D.L.; Lofaj, F.; Kvetkova, L.; Olsen, J.; Shen, Z.; Akhtar, F.: Ultra-high strength martensitic 420 stainless steel with high ductility. Addit. Manuf. 29, 100803 (2019)

    Google Scholar 

  34. Özdemir, N.: Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed. Mater. Lett. 59, 2504–2509 (2005)

    Article  Google Scholar 

  35. Sahin, A.Z.; Yibaş, B.S.; Ahmed, M.; Nickel, J.: Analysis of the friction welding process in relation to the welding of copper and steel bars. J. Mater. Process. Technol. 82, 127–136 (1998)

    Article  Google Scholar 

  36. Esfahani, M.N.; Coupland, J.; Marimuthu, S.: Microstructure and mechanical properties of a laser welded low carbon–stainless steel joint. J. Mater. Process. Technol. 214, 2941–2948 (2014)

    Article  Google Scholar 

  37. Sun, Z.; Moisio, T.: Weld metal/ferritic steel interface in laser welded austenitic/ferritic dissimilar steel joints. J. Mater. Sci. Lett. 13, 802–805 (1994)

    Article  Google Scholar 

  38. Luo, C.; Liu, J.: Crystallography of lath martensite and lower bainite in alloy steels. Mater. Sci. Eng., A 438, 149–152 (2006)

    Article  Google Scholar 

  39. Sarsilmaz, F.; Kirik, I.; Batı, S.: Microstructure and mechanical properties of armor 500/AISI2205 steel joint by friction welding. J. Manuf. Process. 28, 131–136 (2017)

    Article  Google Scholar 

  40. Özdemir, N.; Sarsılmaz, F.; Hasçalık, A.: Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel. Mater. Des. 28, 301–307 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Batman University, Mechanical Engineering Department Head for using their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Okumuş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adin, M.Ş., Okumuş, M. Investigation of Microstructural and Mechanical Properties of Dissimilar Metal Weld Between AISI 420 and AISI 1018 STEELS. Arab J Sci Eng 47, 8341–8350 (2022). https://doi.org/10.1007/s13369-021-06243-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06243-w

Keywords

Navigation