Skip to main content
Log in

Finite-element modeling for static bending and free vibration analyses of double-layer non-uniform thickness FG plates taking into account sliding interactions

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The present article explores static bending and natural oscillation characteristics of double-layer non-uniform thickness functionally graded (FG) plates that are equipped with shear connectors. The fundamental equations are comprehensively described and developed by the utilization of the finite-element method (FEM), in conjunction with the widely recognized and straightforward first-order shear deformation plate theory (FSDT). The current hypothesis and computational framework have been validated through a comparative analysis of the numerical findings from this study with those reported in other esteemed publications. Parametric research is undertaken to explore the impact of geometrical and physical features on the structural response of the FG plate, with particular emphasis on the variation in thickness and distribution of shear connectors. The numerical findings obtained from this study can serve as a valuable point of reference for further orientation endeavors in the same domain. Furthermore, the proposed complex structural model can be referred to as an important idea for application in the fields of aerospace, nuclear, and military technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The report incorporates the data utilized to substantiate the outcomes of this study.

References

  1. Shariati A. Various types of shear connectors in composite structures: a review. Int J Phys Sci. 2012;7:22.

    Google Scholar 

  2. Shim CS, Lee PG, Yoon TY. Static behavior of large stud shear connectors. Eng Struct. 2004;26(12):1853–60. https://doi.org/10.1016/j.engstruct.2004.07.011.

    Article  Google Scholar 

  3. Chen LP, He GJ, Xiao HZ. Review on shear connectors in timber-concrete composite beams. Appl Mech Mater. 2015;744–746:274–8. https://doi.org/10.4028/www.scientific.net/AMM.744-746.274.

    Article  Google Scholar 

  4. Hùng V. “Sẽ hoàn thành sửa chữa mặt cầu Thăng Long, thông xe vào cuối năm 2020,” www.vietnamplus.vn, 2020. https://www.vietnamplus.vn/se-hoan-thanh-sua-chua-mat-cau-thang-long-thong-xe-vao-cuoi-nam-2020-post674954.vnp.

  5. Pavlović M, Marković Z, Veljković M, Buđevac D. Bolted shear connectors vs. headed studs behaviour in push-out tests. J Constr Steel Res. 2013;88:134–49. https://doi.org/10.1016/j.jcsr.2013.05.003.

    Article  Google Scholar 

  6. Shariati M, Ramli Sulong NH, Shariati A, Khanouki MA. Behavior of V-shaped angle shear connectors: experimental and parametric study. Mater Struct. 2016;49(9):3909–26. https://doi.org/10.1617/s11527-015-0762-8.

    Article  Google Scholar 

  7. Zhan Y, Huang W, Li Y, Zhang C, Shao J, Tian B. Shear behavior and analytical model of T-type perfobond rib connectors. Arch Civ Mech Eng. 2023. https://doi.org/10.1007/s43452-023-00697-5.

    Article  Google Scholar 

  8. Razaqpur AG, Nofal M. A finite element for modelling the nonlinear behavior of shear connectors in composite structures. Comput Struct. 1989;32(1):169–74. https://doi.org/10.1016/0045-7949(89)90082-5.

    Article  Google Scholar 

  9. Wei Y, Wang Z, Chen S, Zhao K, Zheng K. Structural behavior of prefabricated bamboo-lightweight concrete composite beams with perforated steel plate connectors. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00176-9.

    Article  Google Scholar 

  10. Shariati M, Ramli Sulong NH, Shariati A, Kueh ABH. Comparative performance of channel and angle shear connectors in high strength concrete composites: an experimental study. Constr Build Mater. 2016;120:382–92. https://doi.org/10.1016/j.conbuildmat.2016.05.102.

    Article  Google Scholar 

  11. Nguyen HT, Kim SE. Finite element modeling of push-out tests for large stud shear connectors. J Constr Steel Res. 2009;65(10):1909–20. https://doi.org/10.1016/j.jcsr.2009.06.010.

    Article  Google Scholar 

  12. Reza SM, Enrico S, Benson SP, Frangopal DM. Nonlinear analysis of composite beams with deformable shear connectors. J Struct Eng. 1998;124(10):1148–58. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1148).

    Article  Google Scholar 

  13. Polus Ł, Szumigała M. An experimental and numerical study of aluminium–concrete joints and composite beams. Arch Civ Mech Eng. 2019;19(2):375–90. https://doi.org/10.1016/j.acme.2018.11.007.

    Article  Google Scholar 

  14. Lorenc W. Boundary approach in shape study of composite dowel shear connector. Arch Civ Mech Eng. 2009;9(4):55–66. https://doi.org/10.1016/s1644-9665(12)60069-7.

    Article  Google Scholar 

  15. Nguyen Thai D, Van Minh P, Phan Hoang C, Ta Duc T, Nguyen NTC, Nguyen Thi D. Bending of symmetric sandwich FGM beams with shear connectors. Math Probl Eng. 2021. https://doi.org/10.1155/2021/7596300.

    Article  MathSciNet  Google Scholar 

  16. Su RKL, Pam HJ, Lam WY. Effects of shear connectors on plate-reinforced composite coupling beams of short and medium-length spans. J Constr Steel Res. 2006;62(1):178–88. https://doi.org/10.1016/j.jcsr.2005.04.019.

    Article  Google Scholar 

  17. Ghasemi AR, Taheri-Behrooz F, Farahani SMN, Mohandes M. Nonlinear free vibration of an Euler–Bernoulli composite beam undergoing finite strain subjected to different boundary conditions. J Vib Control. 2014;22(3):799–811. https://doi.org/10.1177/1077546314528965.

    Article  MathSciNet  Google Scholar 

  18. Mohandes M, Ghasemi AR. Finite strain analysis of nonlinear vibrations of symmetric laminated composite Timoshenko beams using generalized differential quadrature method. J Vib Control. 2014;22(4):940–54. https://doi.org/10.1177/1077546314538301.

    Article  MathSciNet  Google Scholar 

  19. Ghasemi AR, Mohandes M. A new approach for determination of interlaminar normal/shear stresses in micro and nano laminated composite beams. Adv Struct Eng. 2019;22(10):2334–44. https://doi.org/10.1177/1369433219839294.

    Article  Google Scholar 

  20. Chen A, Norris TG, Hopkins PM, Yossef M. Experimental investigation and finite element analysis of flexural behavior of insulated concrete sandwich panels with FRP plate shear connectors. Eng Struct. 2015;98:95–108. https://doi.org/10.1016/j.engstruct.2015.04.022.

    Article  Google Scholar 

  21. Henry RS, Sriram A, Sri S, Ingham JM. Concept and finite-element modeling of new steel shear connectors for self-centering wall systems. J Eng Mech. 2010;136(2):220–9. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000071.

    Article  Google Scholar 

  22. Xu X, Zhou X, Liu Y. Fatigue life prediction of rubber-sleeved stud shear connectors under shear load based on finite element simulation. Eng Struct. 2021;227: 111449. https://doi.org/10.1016/j.engstruct.2020.111449.

    Article  Google Scholar 

  23. Nguyen H-N, et al. A finite element model for dynamic analysis of triple-layer composite plates with layers connected by shear connectors subjected to moving load. Materials. 2019. https://doi.org/10.3390/ma12040598.

    Article  Google Scholar 

  24. Dudziński W, et al. Study on fatigue cracks in steel-concrete shear connection with composite dowels. Arch Civ Mech Eng. 2011;11(4):839–58. https://doi.org/10.1016/s1644-9665(12)60081-8.

    Article  Google Scholar 

  25. Zhang Z, et al. Shear behavior and design of an innovative embedded connector with flange for steel–concrete composite girder. Arch Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00515-4.

    Article  Google Scholar 

  26. Kim S-E, et al. Finite element simulation of normal—strength CFDST members with shear connectors under bending loading. Eng Struct. 2021;238: 112011. https://doi.org/10.1016/j.engstruct.2021.112011.

    Article  Google Scholar 

  27. Nam VH, Nam NH, Vinh PV, Khoa DN, Thom DV, Minh PV. A new efficient modified first-order shear model for static bending and vibration behaviors of two-layer composite plate. Adv Civ Eng. 2019. https://doi.org/10.1155/2019/6814367.

    Article  Google Scholar 

  28. Zhang J, Liu B, Zhang P, Wang Z. Small-scale test and analysis of corrugated-steel-plate–concrete composite member adopting novel shear connectors. Eng Struct. 2019;184:369–83. https://doi.org/10.1016/j.engstruct.2019.01.115.

    Article  Google Scholar 

  29. Dung NT, Van Minh P, Hung HM, Tien DM. The third-order shear deformation theory for modeling the static bending and dynamic responses of piezoelectric bidirectional functionally graded plates. Adv Mater Sci Eng. 2021. https://doi.org/10.1155/2021/5520240.

    Article  Google Scholar 

  30. Ghasemi AR, Meskini M. Free vibration analysis of porous laminated rotating circular cylindrical shells. J Vib Control. 2019;25(18):2494–508. https://doi.org/10.1177/1077546319858227.

    Article  MathSciNet  Google Scholar 

  31. Meskini M, Ghasemi AR. Electro-magnetic potential effects on free vibration of rotating circular cylindrical shells of functionally graded materials with laminated composite core and piezo electro-magnetic two face sheets. J Sandw Struct Mater. 2020. https://doi.org/10.1177/1099636220909751.

    Article  Google Scholar 

  32. Duc ND. Nonlinear static and dynamic stability of functionally graded plates and shells. Vietnam: Vietnam Natl Univ Press; 2014. p. 724.

    Google Scholar 

  33. Vuong PM, Duc ND. Vibration analysis of variable thickness functionally graded toroidal shell segments. Arch Civ Mech Eng. 2023. https://doi.org/10.1007/s43452-023-00743-2.

    Article  Google Scholar 

  34. Zima B, Moll J. Theoretical and experimental analysis of guided wave propagation in plate-like structures with sinusoidal thickness variations. Arch Civ Mech Eng. 2023. https://doi.org/10.1007/s43452-022-00564-9.

    Article  Google Scholar 

  35. Nguyen VD, Phung VB. Static bending, free vibration, and buckling analyses of two-layer FGM plates with shear connectors resting on elastic foundations. Alexandria Eng J. 2023;62:369–90. https://doi.org/10.1016/j.aej.2022.07.038.

    Article  Google Scholar 

  36. Civalek Ö, Dastjerdi S, Akgöz B. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mech Based Des Struct Mach. 2022;50(6):1914–31. https://doi.org/10.1080/15397734.2020.1766494.

    Article  Google Scholar 

  37. Civalek Ö, Avcar M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng Comput. 2022;38:489–521. https://doi.org/10.1007/s00366-020-01168-8.

    Article  Google Scholar 

  38. Sobhani E, Arbabian A, Civalek Ö, Avcar M. The free vibration analysis of hybrid porous nanocomposite joined hemispherical–cylindrical–conical shells. Eng Comput. 2022;38:3125–52. https://doi.org/10.1007/s00366-021-01453-0.

    Article  Google Scholar 

  39. Mahmoud SR, Ghandourah E, Algarni A, Balubaid M, Tounsi A, Bourada F. On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model. Arch Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00506-5.

    Article  Google Scholar 

  40. Filippi M, Petrolo M, Valvano S, Carrera E. Analysis of laminated composites and sandwich structures by trigonometric, exponential and miscellaneous polynomials and a MITC9 plate element. Compos Struct. 2016;150:103–14. https://doi.org/10.1016/j.compstruct.2015.12.038.

    Article  Google Scholar 

  41. Lezgy-Nazargah M, Salahshuran S. A new mixed-field theory for bending and vibration analysis of multi-layered composite plate. Arch Civ Mech Eng. 2018;18(3):818–32. https://doi.org/10.1016/j.acme.2017.12.006.

    Article  Google Scholar 

  42. Lezgy-Nazargah M, Meshkani Z. An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundations. Struct Eng Mech. 2018;66(5):665–76. https://doi.org/10.12989/sem.2018.66.5.665.

    Article  Google Scholar 

  43. Wang C, Cao S, Lu S, Hu Z, Yao L, He W. A CEL study of dynamic slamming response and failure mechanism on corrugated core composite-metal sandwich structures. Ships Offshore Struct. 2022;17(6):1252–75. https://doi.org/10.1080/17445302.2021.1906195.

    Article  Google Scholar 

  44. Wang R, Fang Z, Lezgy-Nazargah M, Khosravi H. Nonlinear analysis of reinforced concrete slabs using a quasi-3D mixed finite element formulation. Eng Struct. 2023. https://doi.org/10.1016/j.engstruct.2023.116781.

    Article  Google Scholar 

  45. Yuan P, et al. Experimental investigation of G-HPC-based sandwich walls incorporated with metallic tube core under contact explosion. Arch Civ Mech Eng. 2022. https://doi.org/10.1007/s43452-022-00477-7.

    Article  Google Scholar 

  46. Abramowicz M, Berczyński S, Wróblewski T. Modelling and parameter identification of steel–concrete composite beams in 3D rigid finite element method. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00100-7.

    Article  Google Scholar 

  47. Thai LM, Luat DT, Van Ke T, Van Phung M. Finite-element modeling for static bending analysis of rotating two-layer FGM beams with shear connectors resting on imperfect elastic foundations. J Aerosp Eng. 2023. https://doi.org/10.1061/jaeeez.aseng-4771.

    Article  Google Scholar 

  48. Van Thom D, Duc DH, Van Minh P, Tung NS. Finite element modelling for vibration response of cracked stiffened Fgm plates. Vietnam J Sci Technol. 2020;58(1):119–29. https://doi.org/10.15625/2525-2518/58/1/14278.

    Article  Google Scholar 

  49. Tran V-K, Tran T-T, Phung M-V, Pham Q-H, Nguyen-Thoi T. A finite element formulation and nonlocal theory for the static and free vibration analysis of the sandwich functionally graded nanoplates resting on elastic foundation. J Nanomater. 2020;2020:8786373. https://doi.org/10.1155/2020/8786373.

    Article  Google Scholar 

  50. Liew KM, Wang J, Ng TY, Tan MJ. Free vibration and buckling analyses of shear-deformable plates based on FSDT meshfree method. J Sound Vib. 2004;276(3):997–1017. https://doi.org/10.1016/j.jsv.2003.08.026.

    Article  Google Scholar 

  51. Ferreira A. MATLAB codes for finite element analysis: solids and structures. Dordrecht: Springer; 2009.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Grant QG.23.65 of Vietnam National University, Hanoi. The authors are grateful to this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dinh Duc.

Ethics declarations

Conflict of interest

All the authors affirm that there are no conflicts of interest for the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van, N.T.H., Van Minh, P. & Duc, N.D. Finite-element modeling for static bending and free vibration analyses of double-layer non-uniform thickness FG plates taking into account sliding interactions. Archiv.Civ.Mech.Eng 24, 107 (2024). https://doi.org/10.1007/s43452-024-00914-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00914-9

Keywords

Navigation