Skip to main content
Log in

Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper presents the free vibration and buckling analyses of functionally graded carbon nanotube-reinforced (FG-CNTR) laminated non-rectangular plates, i.e., quadrilateral and skew plates, using a four-nodded straight-sided transformation method. At first, the related equations of motion and buckling of quadrilateral plate have been given, and then, these equations are transformed from the irregular physical domain into a square computational domain using the geometric transformation formulation via discrete singular convolution (DSC). The discretization of these equations is obtained via two-different regularized kernel, i.e., regularized Shannon’s delta (RSD) and Lagrange-delta sequence (LDS) kernels in conjunctions with the discrete singular convolution numerical integration. Convergence and accuracy of the present DSC transformation are verified via existing literature results for different cases. Detailed numerical solutions are performed, and obtained parametric results are presented to show the effects of carbon nanotube (CNT) volume fraction, CNT distribution pattern, geometry of skew and quadrilateral plate, lamination layup, skew and corner angle, thickness-to-length ratio on the vibration, and buckling analyses of FG-CNTR-laminated composite non-rectangular plates with different boundary conditions. Some detailed results related to critical buckling and frequency of FG-CNTR non-rectangular plates have been reported which can serve as benchmark solutions for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Timoshenko SP, Gere JM (1963) Theory of elastic stability. Springer, Berlin, Heidelberg

    Google Scholar 

  2. Leissa AW (1969) Vibration of plates. US Gov Print Off, Nasa-SP160, Washington

  3. Civalek Ö (2004) Geometrically non-linear static and dynamic analysis of plates and shells resting on elastic foundation by the method of polynomial differential quadrature. Firat University, Elazig (in Turkish)

    Google Scholar 

  4. Qatu MS (2004) Vibration of laminated shells and plates. Elsevier Ltd, Amsterdam

    MATH  Google Scholar 

  5. Reddy JN (2004) Mechanics of laminated composite plates and shells : theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  6. Wang CM, Wang CY, Reddy JN (2004) Exact solutions for buckling of structural members. CRC Press, Boca Raton

    Book  Google Scholar 

  7. Reddy JN (2006) Theory and analysis of elastic plates and shells. CRC, Boca Raton

    Book  Google Scholar 

  8. Civalek Ö (2008) Free vibration analysis of symmetrically laminated composite plates with first-order shear deformation theory (FSDT) by discrete singular convolution method. Finite Elem Anal Des 44:725–731. https://doi.org/10.1016/j.finel.2008.04.001

    Article  Google Scholar 

  9. Ferreira AJM (2008) MATLAB codes for finite element analysis: solids and structures (Solid mechanics and its applications). Springer, Berlin

  10. Chakraverty S (2009) Vibration of plates. CRC Press, Boca Raton

    Google Scholar 

  11. Shen H-S (2009) Functionally graded materials: nonlinear analysis of plates and shells. CRC Press, Boca Raton

    Google Scholar 

  12. Shen HS (2017) Postbuckling behavior of plates and shells. World Scientific, Singapore

    Book  Google Scholar 

  13. Chajes A (1974) Principles of structural stability theory. Prentice-Hall, Upper Saddle River

    Google Scholar 

  14. Brush DO, Almroth BO (1975) Buckling of bars, plates, and shells. McGraw-Hill, New York

    Book  Google Scholar 

  15. Simitses GJ (1976) An introduction to the elastic stability of structures. Prentice-Hall, Englewood Cliffs

    Book  Google Scholar 

  16. Whitney JM, Ashton JE (1987) Structural analysis of laminated anisotropic plates. Technomic Pub Co., USA

    Google Scholar 

  17. Iyengar NGR (1988) Structural stability of columns and plates. Ellis Horwood series in civil engineering, John-Wiley, New York

  18. Bažant ZP, Cedolin L (1991) Stability of structures: elastic, inelastic, fracture, and damage theories. Oxford University Press, Oxford

    MATH  Google Scholar 

  19. Civalek Ö (1998) Finite element analysis of plates and shells. Fırat University, Elazığ (in Turkish)

    Google Scholar 

  20. Jones RM (1999) Mechanics of composite materials. Taylor & Francis, Oxfordshire

    Google Scholar 

  21. Kitipornchai S, Xiang Y, Wang CM, Liew KM (1993) Buckling of thick skew plates. Int J Numer Methods Eng 36:1299–1310. https://doi.org/10.1002/nme.1620360804

    Article  MATH  Google Scholar 

  22. Liew KM, Xiang Y, Kitipornchai S, Wang CM (1993) Vibration of thick skew plates based on mindlin shear deformation plate theory. J Sound Vib 168:39–69. https://doi.org/10.1006/jsvi.1993.1361

    Article  MATH  Google Scholar 

  23. Wang CM, Liew KM, Xiang Y, Kitipornchai S (1993) Buckling of rectangular mindlin plates with internal line supports. Int J Solids Struct 30:1–17. https://doi.org/10.1016/0020-7683(93)90129-U

    Article  MATH  Google Scholar 

  24. Xiang Y, Wang CM, Kitipornchal S (1995) Buckling of skew mindlin plates subjected to in-plane shear loadings. Int J Mech Sci 37:1089–1101. https://doi.org/10.1016/0020-7403(95)00014-O

    Article  MATH  Google Scholar 

  25. Liew KM, Han J-B (1997) A four-node differential quadrature method for straight-sided quadrilateral reissner/mindlin plates. Commun Numer Methods Eng 13:73–81. https://doi.org/10.1002/(SICI)1099-0887(199702)13:2<73:AID-CNM32>3.0.CO;2-W

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang S (1997) Buckling analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory. Compos Struct 37:5–19. https://doi.org/10.1016/S0263-8223(97)00050-0

    Article  Google Scholar 

  27. Wang S (1997) Free vibration analysis of skew fibre-reinforced composite laminates based on first-order shear deformation plate theory. Comput Struct 63:525–538. https://doi.org/10.1016/S0045-7949(96)00357-4

    Article  MATH  Google Scholar 

  28. Wang S (1997) Vibration of thin skew fibre reinforced composite laminates. J Sound Vib 201:335–352. https://doi.org/10.1006/jsvi.1996.0745

    Article  Google Scholar 

  29. Anlas G, Göker G (2001) Vibration analysis of skew fibre-reinforced composite laminated plates. J Sound Vib 242:265–276. https://doi.org/10.1006/jsvi.2000.3366

    Article  Google Scholar 

  30. Ferreira AJM (2003) A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates. Compos Struct 59:385–392. https://doi.org/10.1016/S0263-8223(02)00239-8

    Article  Google Scholar 

  31. Ferreira AJM, Roque CMC, Martins PALS (2003) Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method. Compos Part B Eng 34:627–636. https://doi.org/10.1016/S1359-8368(03)00083-0

    Article  Google Scholar 

  32. Ferreira AJM, Roque CMC, Neves AMA et al (2011) Buckling and vibration analysis of isotropic and laminated plates by radial basis functions. Compos Part B Eng 42:592–606. https://doi.org/10.1016/j.compositesb.2010.08.001

    Article  Google Scholar 

  33. Karami G, Malekzadeh P (2003) Application of a new differential quadrature methodology for free vibration analysis of plates. Int J Numer Methods Eng 56:847–868. https://doi.org/10.1002/nme.590

    Article  MATH  Google Scholar 

  34. Civalek Ö (2004) Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng Struct 26:171–186. https://doi.org/10.1016/j.engstruct.2003.09.005

    Article  Google Scholar 

  35. Huang YQ, Li QS (2004) Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method. Comput Methods Appl Mech Eng 193:3471–3492. https://doi.org/10.1016/j.cma.2003.12.039

    Article  MATH  Google Scholar 

  36. Liew KM, Chen XL, Reddy JN (2004) Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates. Comput Methods Appl Mech Eng 193:205–224. https://doi.org/10.1016/j.cma.2003.10.002

    Article  MATH  Google Scholar 

  37. Leung AYT, Xiao C, Zhu B, Yuan S (2005) Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element. Compos Struct 68:167–175. https://doi.org/10.1016/j.compstruct.2004.03.011

    Article  Google Scholar 

  38. Garg AK, Khare RK, Kant T (2006) Free vibration of skew fiber-reinforced composite and sandwich laminates using a shear deformable finite element model. J Sandw Struct Mater 8:33–53. https://doi.org/10.1177/1099636206056457

    Article  Google Scholar 

  39. Civalek Ö, Acar MH (2007) Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int J Press Vessel Pip 84:527–535. https://doi.org/10.1016/j.ijpvp.2007.07.001

    Article  Google Scholar 

  40. Civalek Ö (2009) Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method. Appl Math Model 33:3825–3835. https://doi.org/10.1016/j.apm.2008.12.019

    Article  MathSciNet  MATH  Google Scholar 

  41. Nguyen LB, Thai CH, Nguyen-Xuan H (2016) A generalized unconstrained theory and isogeometric finite element analysis based on Bézier extraction for laminated composite plates. Eng Comput 32:457–475. https://doi.org/10.1007/s00366-015-0426-x

    Article  Google Scholar 

  42. Kalita K, Dey P, Haldar S, Gao XZ (2019) Optimizing frequencies of skew composite laminates with metaheuristic algorithms. Eng Comput. https://doi.org/10.1007/s00366-019-00728-x

    Article  Google Scholar 

  43. Mishra BP, Barik M (2019) NURBS-augmented finite element method for stability analysis of arbitrary thin plates. Eng Comput 35:351–362. https://doi.org/10.1007/s00366-018-0603-9

    Article  Google Scholar 

  44. Alihemmati J, Beni YT (2020) Developing three-dimensional mesh-free Galerkin method for structural analysis of general polygonal geometries. Eng Comput 36:1059–1068. https://doi.org/10.1007/s00366-019-00749-6

    Article  Google Scholar 

  45. Iijima S (1991) Helical microtubules of graphitic carbon. Nature. https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  46. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science (-80) 265:1212–1214. https://doi.org/10.1126/science.265.5176.1212

    Article  Google Scholar 

  47. Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391:62–64. https://doi.org/10.1038/34145

    Article  Google Scholar 

  48. Kataura H, Kumazawa Y, Maniwa Y et al (1999) Optical properties of single-wall carbon nanotubes. Synth Met 103:2555–2558. https://doi.org/10.1016/S0379-6779(98)00278-1

    Article  Google Scholar 

  49. Rochefort A, Avouris P, Lesage F, Salahub DR (1999) Electrical and mechanical properties of distorted carbon nanotubes. Phys Rev B Condens Matter Mater Phys 60:13824–13830. https://doi.org/10.1103/PhysRevB.60.13824

    Article  Google Scholar 

  50. Salvetat JP, Bonard JM, Thomson NB et al (1999) Mechanical properties of carbon nanotubes. Appl Phys A Mater Sci Process 69:255–260. https://doi.org/10.1007/s003390050999

    Article  Google Scholar 

  51. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912. https://doi.org/10.1016/S0266-3538(01)00094-X

    Article  Google Scholar 

  52. Yakobson BI, Avouris P (2001) Mechanical properties of carbon nanotubes. Carbon nanotubes. Springer, Berlin, pp 287–327

    Chapter  Google Scholar 

  53. Li YH, Wei J, Zhang X et al (2002) Mechanical and electrical properties of carbon nanotube ribbons. Chem Phys Lett 365:95–100. https://doi.org/10.1016/S0009-2614(02)01434-3

    Article  Google Scholar 

  54. Sawaya S, Akita S, Nakayama Y (2007) Correlation between the mechanical and electrical properties of carbon nanotubes. Nanotechnology 18:35702. https://doi.org/10.1088/0957-4484/18/3/035702

    Article  Google Scholar 

  55. Koizumi M (1993) The concept of FGM. Ceram Trans Funct Graded Mater 34:3–10

    Google Scholar 

  56. Ganapathi M, Prakash T, Sundararajan N (2006) Influence of functionally graded material on buckling of skew plates under mechanical loads. J Eng Mech 132:902–905. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:8(902)

    Article  Google Scholar 

  57. Zhao X, Lee YY, Liew KM (2009) Free vibration analysis of functionally graded plates using the element-free kp-Ritz method. J Sound Vib 319:918–939. https://doi.org/10.1016/j.jsv.2008.06.025

    Article  Google Scholar 

  58. Sun J, Xu X, Lim CW (2014) Buckling of functionally graded cylindrical shells under combined thermal and compressive loads. J Therm Stress 37:340–362. https://doi.org/10.1080/01495739.2013.869143

    Article  Google Scholar 

  59. Van TH, Duc ND (2014) Nonlinear response of shear deformable FGM curved panels resting on elastic foundations and subjected to mechanical and thermal loading conditions. Appl Math Model 38:2848–2866. https://doi.org/10.1016/j.apm.2013.11.015

    Article  MathSciNet  MATH  Google Scholar 

  60. Chaht FL, Kaci A, Houari MSA et al (2015) Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos Struct 18:425–442. https://doi.org/10.12989/scs.2015.18.2.425

    Article  Google Scholar 

  61. Tadi Beni Y, Mehralian F, Razavi H (2015) Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos Struct 120:65–78. https://doi.org/10.1016/j.compstruct.2014.09.065

    Article  Google Scholar 

  62. Barati MR, Sadr MH, Zenkour AM (2016) Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int J Mech Sci 117:309–320. https://doi.org/10.1016/j.ijmecsci.2016.09.012

    Article  Google Scholar 

  63. Demir Ç, Mercan K, Civalek O (2016) Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel. Compos Part B Eng 94:1–10. https://doi.org/10.1016/j.compositesb.2016.03.031

    Article  Google Scholar 

  64. Tadi Beni Y (2016) Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech Res Commun 75:67–80. https://doi.org/10.1016/j.mechrescom.2016.05.011

    Article  Google Scholar 

  65. Tadi Beni Y (2016) Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J Intell Mater Syst Struct 27:2199–2215. https://doi.org/10.1177/1045389X15624798

    Article  Google Scholar 

  66. Abdelaziz HH, Meziane MAA, Bousahla AA et al (2017) An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sand wich plates with various boundary conditions. Steel Compos Struct 25:693–704. https://doi.org/10.12989/scs.2017.25.6.693

    Article  Google Scholar 

  67. Akgöz B, Civalek Ö (2017) Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Compos Part B Eng 129:77–87. https://doi.org/10.1016/J.COMPOSITESB.2017.07.024

    Article  Google Scholar 

  68. Malekzadeh P, Alibeygi Beni A (2010) Free vibration of functionally graded arbitrary straight-sided quadrilateral plates in thermal environment. Compos Struct 92:2758–2767. https://doi.org/10.1016/j.compstruct.2010.04.011

    Article  Google Scholar 

  69. Huynh TA, Luu AT, Lee J (2017) Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach. Meccanica 52:2527–2546. https://doi.org/10.1007/s11012-016-0603-z

    Article  MathSciNet  Google Scholar 

  70. Zouatnia N, Hadji L, Kassoul A (2017) An analytical solution for bending and vibration responses of functionally graded beams with porosities. Wind Struct An Int J 25:329–342. https://doi.org/10.12989/was.2017.25.4.329

    Article  Google Scholar 

  71. Avcar M, Mohammed WKM (2018) Free vibration of functionally graded beams resting on Winkler-Pasternak foundation. Arab J Geosci 11:232. https://doi.org/10.1007/s12517-018-3579-2

    Article  Google Scholar 

  72. Chakraverty S, Pradhan KK (2018) Flexural vibration of functionally graded thin skew plates resting on elastic foundations. Int J Dyn Control 6:97–121. https://doi.org/10.1007/s40435-017-0308-8

    Article  MathSciNet  Google Scholar 

  73. Chen M, Jin G, Ma X et al (2018) Vibration analysis for sector cylindrical shells with bi-directional functionally graded materials and elastically restrained edges. Compos Part B Eng 153:346–363. https://doi.org/10.1016/j.compositesb.2018.08.129

    Article  Google Scholar 

  74. Duc ND, Khoa ND, Thiem HT (2018) Nonlinear thermo-mechanical response of eccentrically stiffened Sigmoid FGM circular cylindrical shells subjected to compressive and uniform radial loads using the Reddy’s third-order shear deformation shell theory. Mech Adv Mater Struct 25:1156–1167. https://doi.org/10.1080/15376494.2017.1341581

    Article  Google Scholar 

  75. Gao K, Gao W, Chen D, Yang J (2018) Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Compos Struct 204:831–846. https://doi.org/10.1016/j.compstruct.2018.08.013

    Article  Google Scholar 

  76. Hussain M, Naeem MN, Isvandzibaei MR (2018) Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell. Proc Inst Mech Eng Part C J Mech Eng Sci 232:4564–4577. https://doi.org/10.1177/0954406217753459

    Article  Google Scholar 

  77. Rajasekaran S, Khaniki HB (2018) Bending, buckling and vibration analysis of functionally graded non-uniform nanobeams via finite element method. J Brazil Soc Mech Sci Eng 40: https://doi.org/10.1007/s40430-018-1460-6

    Article  Google Scholar 

  78. Sari MS, Al-Rbai M, Qawasmeh BR (2018) Free vibration characteristics of functionally graded Mindlin nanoplates resting on variable elastic foundations using the nonlocal elasticity theory. Adv Mech Eng 10:168781401881345. https://doi.org/10.1177/1687814018813458

    Article  Google Scholar 

  79. Zenkour AM, Sobhy M (2010) Thermal buckling of various types of FGM sandwich plates. Compos Struct 93:93–102. https://doi.org/10.1016/j.compstruct.2010.06.012

    Article  Google Scholar 

  80. Shafiei N, She GL (2018) On vibration of functionally graded nano-tubes in the thermal environment. Int J Eng Sci 133:84–98. https://doi.org/10.1016/j.ijengsci.2018.08.004

    Article  MathSciNet  MATH  Google Scholar 

  81. Yang T, Tang Y, Li Q, Yang XD (2018) Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams. Compos Struct 204:313–319. https://doi.org/10.1016/j.compstruct.2018.07.045

    Article  Google Scholar 

  82. Alizadeh M, Fattahi AM (2019) Non-classical plate model for FGMs. Eng Comput 35:215–228. https://doi.org/10.1007/s00366-018-0594-6

    Article  Google Scholar 

  83. Avcar M (2019) Free vibration of imperfect sigmoid and power law functionally graded beams. Steel Compos Struct 30:603–615. https://doi.org/10.12989/scs.2019.30.6.603

    Article  Google Scholar 

  84. Javani M, Kiani Y, Eslami MR (2019) Rapid heating vibrations of FGM annular sector plates. Eng Comput. https://doi.org/10.1007/s00366-019-00825-x

    Article  MATH  Google Scholar 

  85. Khiloun M, Bousahla AA, Kaci A et al (2019) Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput. https://doi.org/10.1007/s00366-019-00732-1

    Article  Google Scholar 

  86. Kwon H, Bradbury CR, Leparoux M (2011) Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv Eng Mater 13:325–329. https://doi.org/10.1002/adem.201000251

    Article  Google Scholar 

  87. Setoodeh A, Ghorbanzadeh M, Malekzadeh P (2012) A two-dimensional free vibration analysis of functionally graded sandwich beams under thermal environment. Proc Inst Mech Eng Part C J Mech Eng Sci 226:2860–2873. https://doi.org/10.1177/0954406212440669

    Article  Google Scholar 

  88. Thai HT, Kim SE (2013) Closed-form solution for buckling analysis of thick functionally graded plates on elastic foundation. Int J Mech Sci 75:34–44. https://doi.org/10.1016/j.ijmecsci.2013.06.007

    Article  Google Scholar 

  89. Taj MNAG, Chakrabarti A (2013) Buckling analysis of functionally graded skew plates: an efficient finite element approach. Int J Appl Mech. https://doi.org/10.1142/S1758825113500415

    Article  Google Scholar 

  90. Duc ND, Quan TQ (2014) Nonlinear response of imperfect eccentrically stiffened FGM cylindrical panels on elastic foundation subjected to mechanical loads. Eur J Mech A/Solids 46:60–71. https://doi.org/10.1016/j.euromechsol.2014.02.005

    Article  MathSciNet  MATH  Google Scholar 

  91. Phung-Van P, Nguyen-Thoi T, Luong-Van H, Lieu-Xuan Q (2014) Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT. Comput Methods Appl Mech Eng 270:15–36. https://doi.org/10.1016/j.cma.2013.11.019

    Article  MATH  Google Scholar 

  92. Shen HS (2009) Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos Struct 91:9–19. https://doi.org/10.1016/j.compstruct.2009.04.026

    Article  Google Scholar 

  93. Shen HS (2012) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos Part B Eng 43:1030–1038. https://doi.org/10.1016/j.compositesb.2011.10.004

    Article  Google Scholar 

  94. Shen HS, Zhang CL (2010) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater Des 31:3403–3411. https://doi.org/10.1016/j.matdes.2010.01.048

    Article  Google Scholar 

  95. Aragh BS, Barati AHN, Hedayati H (2012) Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos Part B Eng 43:1943–1954. https://doi.org/10.1016/j.compositesb.2012.01.004

    Article  Google Scholar 

  96. Malekzadeh P, Golbahar Haghighi MR, Alibeygi Beni A (2012) Buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates on elastic foundations. Meccanica 47:321–333. https://doi.org/10.1007/s11012-011-9436-y

    Article  MathSciNet  MATH  Google Scholar 

  97. Zhu P, Lei ZX, Liew KM (2012) Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct 94:1450–1460. https://doi.org/10.1016/j.compstruct.2011.11.010

    Article  Google Scholar 

  98. Alibeigloo A, Liew KM (2013) Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity. Compos Struct 106:873–881. https://doi.org/10.1016/j.compstruct.2013.07.002

    Article  Google Scholar 

  99. Lei ZX, Liew KM, Yu JL (2013) Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-Ritz method. Comput Methods Appl Mech Eng 256:189–199. https://doi.org/10.1016/j.cma.2012.12.007

    Article  MathSciNet  MATH  Google Scholar 

  100. Lei ZX, Liew KM, Yu JL (2013) Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos Struct 106:128–138. https://doi.org/10.1016/j.compstruct.2013.06.003

    Article  Google Scholar 

  101. Lei ZX, Zhang LW, Liew KM, Yu JL (2014) Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method. Compos Struct 113:328–338. https://doi.org/10.1016/j.compstruct.2014.03.035

    Article  Google Scholar 

  102. Lei ZX, Zhang LW, Liew KM (2015) Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method. Compos Part B Eng 77:291–303. https://doi.org/10.1016/j.compositesb.2015.03.045

    Article  Google Scholar 

  103. Malekzadeh P, Heydarpour Y (2015) Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates. Meccanica 50:143–167. https://doi.org/10.1007/s11012-014-0061-4

    Article  MathSciNet  MATH  Google Scholar 

  104. Zhang LW, Lei ZX, Liew KM, Yu JL (2014) Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos Struct 111:205–212. https://doi.org/10.1016/j.compstruct.2013.12.035

    Article  Google Scholar 

  105. Zhang LW, Lei ZX, Liew KM (2015) Free vibration analysis of functionally graded carbon nanotube-reinforced composite triangular plates using the FSDT and element-free IMLS-Ritz method. Compos Struct 120:189–199. https://doi.org/10.1016/j.compstruct.2014.10.009

    Article  Google Scholar 

  106. Malekzadeh P, Shojaee M (2013) Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin-Walled Struct 71:108–118. https://doi.org/10.1016/j.tws.2013.05.008

    Article  Google Scholar 

  107. Tounsi A, Benguediab S, Adda Bedia EA et al (2013) Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv Nano Res 1:1–11. https://doi.org/10.12989/anr.2013.1.1.001

    Article  Google Scholar 

  108. Malekzadeh P, Zarei AR (2014) Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers. Thin-Walled Struct 82:221–232. https://doi.org/10.1016/j.tws.2014.04.016

    Article  Google Scholar 

  109. Lei ZX, Zhang LW, Liew KM (2015) Buckling of FG-CNT reinforced composite thick skew plates resting on Pasternak foundations based on an element-free approach. Appl Math Comput 266:773–791. https://doi.org/10.1016/j.amc.2015.06.002

    Article  MathSciNet  MATH  Google Scholar 

  110. Liew KM, Lei ZX, Zhang LW (2015) Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos Struct 120:90–97. https://doi.org/10.1016/j.compstruct.2014.09.041

    Article  Google Scholar 

  111. Zhang LW, Lei ZX, Liew KM (2015) Vibration characteristic of moderately thick functionally graded carbon nanotube reinforced composite skew plates. Compos Struct 122:172–183. https://doi.org/10.1016/j.compstruct.2014.11.070

    Article  Google Scholar 

  112. Zhang LW, Lei ZX, Liew KM (2015) Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Compos Part B Eng 75:36–46. https://doi.org/10.1016/j.compositesb.2015.01.033

    Article  MATH  Google Scholar 

  113. Zhang LW, Liew KM, Reddy JN (2016) Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Comput Methods Appl Mech Eng 298:1–28. https://doi.org/10.1016/j.cma.2015.09.016

    Article  MathSciNet  MATH  Google Scholar 

  114. Zhang LW, Xiao LN, Zou GL, Liew KM (2016) Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Compos Struct 148:144–154. https://doi.org/10.1016/j.compstruct.2016.04.006

    Article  Google Scholar 

  115. Zhang LW (2017) On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos Struct 160:824–837. https://doi.org/10.1016/j.compstruct.2016.10.116

    Article  Google Scholar 

  116. Zhang L, Lei Z, Liew K (2017) Free vibration analysis of FG-CNT reinforced composite straight-sided quadrilateral plates resting on elastic foundations using the IMLS-Ritz method. J Vib Control 23:1026–1043. https://doi.org/10.1177/1077546315587804

    Article  MathSciNet  Google Scholar 

  117. Ansari R, Shahabodini A, Faghih Shojaei M (2016) Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity. Compos Struct 139:167–187. https://doi.org/10.1016/j.compstruct.2015.11.079

    Article  Google Scholar 

  118. Ansari R, Torabi J, Hassani R (2019) A comprehensive study on the free vibration of arbitrary shaped thick functionally graded CNT-reinforced composite plates. Eng Struct 181:653–669. https://doi.org/10.1016/j.engstruct.2018.12.049

    Article  Google Scholar 

  119. García-Macías E, Castro-Triguero R, Saavedra Flores EI et al (2016) Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Compos Struct 140:473–490. https://doi.org/10.1016/j.compstruct.2015.12.044

    Article  Google Scholar 

  120. Kiani Y (2016) Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers. Comput Math with Appl 72:2433–2449. https://doi.org/10.1016/j.camwa.2016.09.007

    Article  MathSciNet  MATH  Google Scholar 

  121. Kiani Y (2016) Free vibration of FG-CNT reinforced composite skew plates. Aerosp Sci Technol 58:178–188. https://doi.org/10.1016/j.ast.2016.08.018

    Article  Google Scholar 

  122. Kiani Y (2017) Free vibration of carbon nanotube reinforced composite plate on point Supports using Lagrangian multipliers. Meccanica 52:1353–1367. https://doi.org/10.1007/s11012-016-0466-3

    Article  MathSciNet  MATH  Google Scholar 

  123. Lei ZX, Zhang LW, Liew KM (2016) Vibration of FG-CNT reinforced composite thick quadrilateral plates resting on Pasternak foundations. Eng Anal Bound Elem 64:1–11. https://doi.org/10.1016/j.enganabound.2015.11.014

    Article  MathSciNet  MATH  Google Scholar 

  124. Mehri M, Asadi H, Wang Q (2016) Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Comput Methods Appl Mech Eng 303:75–100. https://doi.org/10.1016/j.cma.2016.01.017

    Article  MathSciNet  MATH  Google Scholar 

  125. Mirzaei M, Kiani Y (2016) Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout. Beilstein J Nanotechnol 7:511–523. https://doi.org/10.3762/bjnano.7.45

    Article  Google Scholar 

  126. Setoodeh AR, Shojaee M (2016) Application of TW-DQ method to nonlinear free vibration analysis of FG carbon nanotube-reinforced composite quadrilateral plates. Thin-Walled Struct 108:1–11. https://doi.org/10.1016/j.tws.2016.07.019

    Article  Google Scholar 

  127. Tornabene F, Fantuzzi N, Bacciocchi M, Viola E (2016) Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos Part B Eng 89:187–218. https://doi.org/10.1016/j.compositesb.2015.11.016

    Article  Google Scholar 

  128. Kiani Y (2016) Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method. Compos Part B Eng 105:176–187. https://doi.org/10.1016/j.compositesb.2016.09.001

    Article  Google Scholar 

  129. Wu C-P, Li H-Y (2016) Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions. J Vib Control 22:89–107. https://doi.org/10.1177/1077546314528367

    Article  MathSciNet  Google Scholar 

  130. Duc ND, Cong PH, Tuan ND et al (2017) Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations. Thin-Walled Struct 115:300–310. https://doi.org/10.1016/j.tws.2017.02.016

    Article  Google Scholar 

  131. Fantuzzi N, Tornabene F, Bacciocchi M, Dimitri R (2017) Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Compos Part B Eng 115:384–408. https://doi.org/10.1016/j.compositesb.2016.09.021

    Article  Google Scholar 

  132. Shokravi M (2017) Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory. Steel Compos Struct 23:623–631. https://doi.org/10.12989/scs.2017.23.6.623

    Article  Google Scholar 

  133. Zhang LW, Xiao LN (2017) Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading. Compos Part B Eng 122:219–230. https://doi.org/10.1016/j.compositesb.2017.03.041

    Article  Google Scholar 

  134. Mehar K, Panda SK, Mahapatra TR (2017) Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure. Eur J Mech A/Solids 65:384–396. https://doi.org/10.1016/j.euromechsol.2017.05.005

    Article  MathSciNet  MATH  Google Scholar 

  135. Mehar K, Panda SK, Patle BK (2018) Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: a finite element approach. Polym Compos 39:3792–3809. https://doi.org/10.1002/pc.24409

    Article  Google Scholar 

  136. Mehar K, Panda SK, Mahapatra TR (2018) Thermoelastic deection responses of CNT reinforced sandwich shell structure using finite-element method. Sci Iran 25:2722–2737. https://doi.org/10.24200/sci.2017.4525

    Article  Google Scholar 

  137. Mehar K, Kumar Panda S (2018) Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method. Polym Compos 39:2751–2764. https://doi.org/10.1002/pc.24266

    Article  Google Scholar 

  138. Kiani Y, Mirzaei M (2018) Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method. Aerosp Sci Technol 77:388–398. https://doi.org/10.1016/j.ast.2018.03.022

    Article  Google Scholar 

  139. Nguyen-Quang K, Vo-Duy T, Dang-Trung H, Nguyen-Thoi T (2018) An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. Comput Methods Appl Mech Eng 332:25–46. https://doi.org/10.1016/j.cma.2017.12.010

    Article  MathSciNet  MATH  Google Scholar 

  140. Zghal S, Frikha A, Dammak F (2018) Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl Math Model 53:132–155. https://doi.org/10.1016/j.apm.2017.08.021

    Article  MathSciNet  MATH  Google Scholar 

  141. Ebrahimi F, Farazmandnia N, Kokaba MR, Mahesh V (2019) Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng Comput. https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  142. Mallek H, Jrad H, Wali M, Dammak F (2019) Nonlinear dynamic analysis of piezoelectric-bonded FG-CNTR composite structures using an improved FSDT theory. Eng Comput. https://doi.org/10.1007/s00366-019-00891-1

    Article  MATH  Google Scholar 

  143. Tornabene F, Bacciocchi M, Fantuzzi N, Reddy JN (2019) Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym Compos 40:E102–E126. https://doi.org/10.1002/pc.24520

    Article  Google Scholar 

  144. Vinyas M (2019) A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos Part B Eng 158:286–301. https://doi.org/10.1016/j.compositesb.2018.09.086

    Article  Google Scholar 

  145. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574. https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  146. Chi S-H, Chung Y-L (2006) Mechanical behavior of functionally graded material plates under transverse load—Part I: analysis. Int J Solids Struct 43:3657–3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011

    Article  MATH  Google Scholar 

  147. Chi S-H, Chung Y-L (2006) Mechanical behavior of functionally graded material plates under transverse load—Part II: numerical results. Int J Solids Struct 43:3675–3691. https://doi.org/10.1016/j.ijsolstr.2005.04.010

    Article  MATH  Google Scholar 

  148. Hoffman DK, Wei GW, Zhang DS, Kouri DJ (1998) Shannon-Gabor wavelet distributed approximating functional. Chem Phys Lett 287:119–124. https://doi.org/10.1016/S0009-2614(98)00130-4

    Article  Google Scholar 

  149. Wei GW, Kouri DJ, Huffman DK (1998) Wavelets and distributed approximating functional. Comput Phys Commun 112:1–6. https://doi.org/10.1016/s0010-4655(98)00051-4

    Article  Google Scholar 

  150. Wei GW (2001) A new algorithm for solving some mechanical problems. Comput Methods Appl Mech Eng 190:2017–2030. https://doi.org/10.1016/S0045-7825(00)00219-X

    Article  MathSciNet  MATH  Google Scholar 

  151. Wei GW, Zhao YB, Xiang Y (2001) The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. Int J Mech Sci 43:1731–1746. https://doi.org/10.1016/S0020-7403(01)00021-2

    Article  MATH  Google Scholar 

  152. Wei GW (2001) Vibration analysis by discrete singular convolution. J Sound Vib 244:535–553. https://doi.org/10.1006/jsvi.2000.3507

    Article  MathSciNet  MATH  Google Scholar 

  153. Wei GW, Zhao YB, Xiang Y (2002) Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: theory and algorithm. Int J Numer Methods Eng 55:913–946. https://doi.org/10.1002/nme.526

    Article  MATH  Google Scholar 

  154. Wan DC, Zhou YC, Wei GW (2002) Numerical solution of incompressible flows by discrete singular convolution. Int J Numer Methods Fluids 38:789–810. https://doi.org/10.1002/fld.253

    Article  MathSciNet  MATH  Google Scholar 

  155. Yang SY, Zhou YC, Wei GW (2002) Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations. Comput Phys Commun 143:113–135. https://doi.org/10.1016/S0010-4655(01)00427-1

    Article  MathSciNet  MATH  Google Scholar 

  156. Civalek Ö (2007) Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Struct Eng Mech 25:127–130. https://doi.org/10.12989/sem.2007.25.1.127

    Article  MATH  Google Scholar 

  157. Akgöz B, Civalek Ö (2011) Nonlinear vibration analysis of laminated plates restingon nonlinear two-parameters elastic foundations. Steel Compos Struct 11:403–421. https://doi.org/10.12989/scs.2011.11.5.403

    Article  Google Scholar 

  158. Civalek Ö (2013) Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos Part B Eng 50:171–179. https://doi.org/10.1016/j.compositesb.2013.01.027

    Article  Google Scholar 

  159. Civalek Ö, Akgöz B (2013) Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix. This paper is dedicated to Professor Guo-Wei Wei. Comput Mater Sci 77:295–303. https://doi.org/10.1016/j.commatsci.2013.04.055

    Article  Google Scholar 

  160. Mercan K, Civalek Ö (2016) DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos Struct 143:300–309. https://doi.org/10.1016/j.compstruct.2016.02.040

    Article  Google Scholar 

  161. Civalek Ö (2017) Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos Part B Eng 111:45–59. https://doi.org/10.1016/j.compositesb.2016.11.030

    Article  Google Scholar 

  162. Mercan K, Civalek Ö (2017) Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos Part B Eng 114:34–45. https://doi.org/10.1016/j.compositesb.2017.01.067

    Article  Google Scholar 

  163. Shao Z, Shen Z, He Q, Wei G (2003) A generalized higher order finite-difference time-domain method and its application in guided-wave problems. IEEE Trans Microw Theory Tech 51:856–861. https://doi.org/10.1109/TMTT.2003.808627

    Article  Google Scholar 

  164. Shao Z, Wei GW, Zhao S (2003) DSC time-domain solution of Maxwell’s equations. J Comput Phys 189:427–453. https://doi.org/10.1016/S0021-9991(03)00226-2

    Article  MathSciNet  MATH  Google Scholar 

  165. Wang Y, Zhao YB, Wei GW (2003) A note on the numerical solution of high-order differential equations. J Comput Appl Math 159:387–398. https://doi.org/10.1016/S0377-0427(03)00541-7

    Article  MathSciNet  MATH  Google Scholar 

  166. Zhou YC, Patnaik BSV, Wan DC, Wei GW (2003) DSC solution for flow in a staggered double lid driven cavity. Int J Numer Methods Eng 57:211–234. https://doi.org/10.1002/nme.674

    Article  MATH  Google Scholar 

  167. Ng CHW, Zhao YB, Wei GW (2004) Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. Comput Methods Appl Mech Eng 193:2483–2506. https://doi.org/10.1016/j.cma.2004.01.013

    Article  MATH  Google Scholar 

  168. Yu S, Zhao S, Wei GW (2005) Local spectral time splitting method for first- and second-order partial differential equations. J Comput Phys 206:727–780. https://doi.org/10.1016/j.jcp.2005.01.010

    Article  MathSciNet  MATH  Google Scholar 

  169. Civalek Ö (2006) Vibration analysis of conical panels using the method of discrete singular convolution. Commun Numer Methods Eng 24:169–181. https://doi.org/10.1002/cnm.961

    Article  MathSciNet  MATH  Google Scholar 

  170. Zhang L, Xiang Y, Wei GW (2006) Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions. Int J Mech Sci 48:1126–1138. https://doi.org/10.1016/j.ijmecsci.2006.05.005

    Article  MATH  Google Scholar 

  171. Karunasena W, Liew KM, Al-Bermani FGA (1996) Natural frequencies of thick arbitrary quadrilateral plates using the pb-2 Rritz method. J Sound Vib 196:371–385. https://doi.org/10.1006/jsvi.1996.0489

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Center for Interneural Computing of China Medical University of Taiwan. Ömer Civalek would like to thank the committee member of Research Center for Interneural Computing of China Medical University of Taiwan for their help via solution of differential equations.

Author information

Authors and Affiliations

Authors

Contributions

ÖC: conceptualization, modeling and software, methodology, validation, ınvestigation, formal analysis, writing -original draft, and supervision. MA: software, writing, editing, resources, visualization, formal analysis, and computational analysis.

Corresponding author

Correspondence to Ömer Civalek.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civalek, Ö., Avcar, M. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers 38 (Suppl 1), 489–521 (2022). https://doi.org/10.1007/s00366-020-01168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01168-8

Keywords

Navigation