Skip to main content
Log in

On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This work investigates the thermo-mechanical bending response of porous functionally graded sandwich plates which can be considered for military and civil use. Integral four-unknown shear deformation theory is proposed to present the kinematic of the structure. The differential equilibrium equations are determined via the principle of virtual work and solved with Navier’s procedure. The influence of porosity parameters is examined to explain the structural integrity of such structures that can be utilized in military and civil industries. In addition, a detailed parametric investigation is performed to highlight the impact of the “volume fraction variation”, “geometrical ratios” and “thermal load” on thermo-mechanical bending response of the porous functionally graded sandwich plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vinson JR. Sandwich structures. Appl Mech Rev. 2001;54(3):201–14. https://doi.org/10.1115/1.3097295.

    Article  MathSciNet  ADS  Google Scholar 

  2. Vinson JR. Sandwich structures: past, present, and future. In: Thomsen O, Bozhevolnaya E, Lyckegaard A, editors. Sandwich structures 7: advancing with sandwich structures and materials. Dordrecht: Springer; 2005. p. 3–12. https://doi.org/10.1007/1-4020-3848-8_1.

    Chapter  Google Scholar 

  3. Lindström A, Hallström S. Energy absorption of SMC/balsa sandwich panels with geometrical triggering features. Compos Struct. 2010;92(11):2676–84. https://doi.org/10.1016/j.compstruct.2010.03.018.

    Article  Google Scholar 

  4. Dean J, Fallah AS, Brown PM, Louca LA, Clyne TW. Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores. Compos Struct. 2011;93(3):1089–95. https://doi.org/10.1016/j.compstruct.2010.09.019.

    Article  Google Scholar 

  5. Katariya PV, Panda SK, Mahapatra TR. Prediction of nonlinear eigenfrequency of laminated curved sandwich structure using higher-order equivalent single-layer theory. J Sandwich Struct Mater. 2017;21(8):2846–69. https://doi.org/10.1177/1099636217728420.

    Article  Google Scholar 

  6. Katariya PV, Panda SK. Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect. Steel Composite Structures. 2020;34(2):279–88. https://doi.org/10.12989/scs.2020.34.2.279.

    Article  Google Scholar 

  7. Akavci SS. Mechanical behavior of functionally graded sandwich plates on elastic foundation. Compos Part B. 2016;96:136–52. https://doi.org/10.1016/j.compositesb.2016.04.035.

    Article  Google Scholar 

  8. Sayyad AS, Ghugal YM. A unified five-degree-of-freedom theory for the bending analysis of softcore and hardcore functionally graded sandwich beams and plates. J Sandwich Struct Mater. 2019. https://doi.org/10.1177/1099636219840980.

    Article  Google Scholar 

  9. Hadji L, Safa A. Bending analysis of softcore and hardcore functionally graded sandwich beams. Earthquakes Struct Int J. 2020;18(4):481–92. https://doi.org/10.12989/eas.2020.18.4.481.

    Article  Google Scholar 

  10. Wang ZX, Shen HS. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Compos Struct. 2011;93(10):2521–32. https://doi.org/10.1016/j.compstruct.2011.04.014.

    Article  Google Scholar 

  11. Neves AMA, Ferreira AJM, Carrera E, Cinefra M, Jorge RMN, Soares CMM. Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering Zig-Zag and warping effects. Adv Eng Softw. 2012;52:30–43. https://doi.org/10.1016/j.advengsoft.2012.05.005.

    Article  Google Scholar 

  12. Natarajan S, Manickam G. Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elem Anal Des. 2012;57:32–42. https://doi.org/10.1016/j.finel.2012.03.006.

    Article  Google Scholar 

  13. Li D, Deng Z, Xiao H. Thermomechanical bending analysis of functionally graded sandwich plates using four variable refined plate theory. Compos Part B-Eng. 2016;106:107–19. https://doi.org/10.1016/j.compositesb.2016.08.041.

    Article  Google Scholar 

  14. Li D, Deng Z, Chen G, Xiao H, Zhu L. Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core. Compos Struct. 2017;169:29–41. https://doi.org/10.1016/j.compstruct.2017.01.026.

    Article  Google Scholar 

  15. Nguyen TK, Nguyen VH, Chau-Dinh T, Vo TP, Nguyen XH. Static and vibration analysis of isotropic and functionally graded sandwich plates using an edge-based MITC3 finite elements. Compos Part B-Eng. 2016;107:162–73. https://doi.org/10.1016/j.compositesb.2016.09.058.

    Article  Google Scholar 

  16. Mehar K, Panda S. Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure. Eur J Mech A/Solids. 2017;65:384–96. https://doi.org/10.1016/j.euromechsol.2017.05.005.

    Article  MathSciNet  Google Scholar 

  17. Rachedi MA, Benyoucef S, Bouhadra A, Bachir Bouiadjra R, Sekkal M, Benachour A. Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation. Geomech Eng. 2020;22(1):65–80. https://doi.org/10.12989/gae.2020.22.1.065.

    Article  Google Scholar 

  18. Merzoug M, Bourada M, Sekkal M, Ali Chaibdra A, Belmokhtar C, Benyoucef S, Benachour A. 2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: effect of the micromechanical models. Geomech Eng. 2020;22(4):361–74. https://doi.org/10.12989/gae.2020.22.4.361.

    Article  Google Scholar 

  19. Yang Z, Lu H, Sahmani S, Safaei B. Isogeometric couple stress continuum-based linear and nonlinear flexural responses of functionally graded composite microplates with variable thickness. Archiv Civ Mech Eng. 2021;21:114. https://doi.org/10.1007/s43452-021-00264-w.

    Article  Google Scholar 

  20. Ghobadi A, Golestanian H, Beni YT, Kamil Zur KK. On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Commun Nonlinear Sci Numer Simul. 2020;95:105585. https://doi.org/10.1016/j.cnsns.2020.105585.

    Article  MathSciNet  Google Scholar 

  21. Wattanasakulpong N, Ungbhakorn V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp Sci Technol. 2014;32(1):111–20. https://doi.org/10.1016/j.ast.2013.12.002.

    Article  Google Scholar 

  22. Akbaş ŞD. Thermal effects on the vibration of functionally graded deep beams with porosity”. J Appl Mech. 2017;9(5):1750076. https://doi.org/10.1142/S1758825117500764.

    Article  Google Scholar 

  23. Akbaş ŞD. Post-buckling responses of functionally graded beams with porosities. Steel Compos Struct. 2017. https://doi.org/10.1298/scs.2017.24.5.579.

    Article  Google Scholar 

  24. Akbaş ŞD. Vibration and static analysis of functionally graded porous plates. J Appl Comput Mech. 2017;3(3):199–207. https://doi.org/10.22055/jacm.2017.21540.1107.

    Article  Google Scholar 

  25. Akbaş ŞD. Stability of a non-homogenous porous plate by using generalized differantial quadrature method. J Eng Appl Sci. 2017;9(2):147–55. https://doi.org/10.24107/ijeas.322375.

    Article  Google Scholar 

  26. Eltaher MA, Fouda N, El-midany T, Sadoun AM. Modified porosity model in analysis of functionally graded porous nanobeams. J Braz Soc Mech Sci Eng. 2018;40(3):141. https://doi.org/10.1007/s40430-018-1065-0.

    Article  Google Scholar 

  27. Kiran MC, Kattimani SC, Vinyas M. Porosity influence on structural behaviour of skew functionally graded magneto-electro-elastic plate. Compos Struct. 2018;191:36–77. https://doi.org/10.1016/j.compstruct.2018.02.023.

    Article  Google Scholar 

  28. Ahmed RA, Fenjan RM, Faleh NM. Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections. Geomech Eng. 2019;17(2):175–80. https://doi.org/10.12989/gae.2019.17.2.175.

    Article  Google Scholar 

  29. Avcar M. Free vibration of imperfect sigmoid and power law functionally graded beams. Steel Composite Struct. 2019;30(6):603–15. https://doi.org/10.12989/SCS.2019.30.6.603.

    Article  Google Scholar 

  30. Yaghoobi H, Taheri F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos Struct. 2020;252: 112700. https://doi.org/10.1016/j.compstruct.2020.112700.

    Article  Google Scholar 

  31. Hadji L, Avcar M. Free vibration analysis of FG porous sandwich plates under various boundary conditions. J Appl Comput Mech. 2021;7(2):505–19. https://doi.org/10.2205/JACM.2020.35328.2628.

    Article  Google Scholar 

  32. Phung-Van P, Ferreira AJM, Thai CH. Computational optimization for porosity-dependent isogeometric analysis of functionally graded sandwich nanoplates. Compos Struct. 2020;239: 112029. https://doi.org/10.1016/j.compstruct.2020.112029.

    Article  Google Scholar 

  33. Fenjan RM, Moustafa NM, Faleh NM. Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM. Adv Nano Res. 2020;8(4):283–92. https://doi.org/10.1298/anr.2020.8.4.283.

    Article  Google Scholar 

  34. Vinyas M. On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Composite Struct. 2020;240: 112044. https://doi.org/10.1016/j.compstruct.2020.112044.

    Article  Google Scholar 

  35. Hadji L. Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model. Smart Struct Syst. 2020;26(2):253–62. https://doi.org/10.12989/sss.2020.26.2.253.

    Article  Google Scholar 

  36. Chen D, Yang J, Kitipornchai S. Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method. Arch Civil Mech Eng. 2019;19(1):157–70. https://doi.org/10.1016/j.acme.2018.09.004.

    Article  CAS  Google Scholar 

  37. Beni YT. Size dependent coupled electromechanical torsional analysis of porous FG flexoelectric micro/nanotubes. Mech Syst Signal Process. 2022;178: 109281. https://doi.org/10.1016/j.ymssp.2022.109281.

    Article  Google Scholar 

  38. Dehkordi AA, Goojani RJ, Beni YT. Porous flexoelectric cylindrical nanoshell based on the non-classical continuum theory. Appl Phys A. 2022;128:478. https://doi.org/10.1007/s00339-022-05584-z.

    Article  CAS  ADS  Google Scholar 

  39. Sh EL, Kattimani S, Vinyas M. Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates. Archiv Civ Mech Eng. 2022;22:38. https://doi.org/10.1007/s43452-021-00357-6.

    Article  Google Scholar 

  40. Beni YT, Alihemmati J. On the coupled transient hygrothermal analysis in the porous cylindrical panels. Transp Porous Med. 2022;142:89–114. https://doi.org/10.1007/s11242-021-01605-2.

    Article  Google Scholar 

  41. Daouadji TH, Hadji L. Analytical solution of nonlinear cylindrical bending for functionally graded plates. Geomech Eng. 2015;9(5):631–44. https://doi.org/10.12989/GAE.2015.9.5.631.

    Article  Google Scholar 

  42. Akbas SD. Wave propagation of a functionally graded beam in thermal environments. Steel Composite Struct. 2015;19(6):1421–47. https://doi.org/10.12989/SCS.2015.19.6.1421.

    Article  Google Scholar 

  43. Attia MA. On the mechanics of functionally graded nanobeams with the account of surface elasticity. Int J Eng Sci. 2017;115:73–101. https://doi.org/10.1016/j.ijengsci.2017.03.011.

    Article  MathSciNet  Google Scholar 

  44. Panda SK, Singh BN. Nonlinear finite element analysis of thermal post-buckling vibration of laminated composite shell panel embedded with SMA fibre. Aerosp Sci Technol. 2013;29(1):47–57. https://doi.org/10.1016/j.ast.2013.01.007.

    Article  Google Scholar 

  45. Singh VK, Panda SK. Nonlinear free vibration analysis of single/doubly curved composite shallow shell panels. Thin-Walled Struct. 2014;85:341–9. https://doi.org/10.1016/j.tws.2014.09.003.

    Article  Google Scholar 

  46. Mehar K, Panda SK. Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure. Adv Nano Res. 2019;7(3):181–90. https://doi.org/10.12989/ANR.2019.7.3.181.

    Article  Google Scholar 

  47. Madenci E. A refined functional and mixed formulation to static analyses of fgm beams. Struct Eng Mech. 2019;69(4):427–37. https://doi.org/10.12989/sem.2019.69.4.427.

    Article  Google Scholar 

  48. Timesli A. Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation. Comput Concrete. 2020;26(1):53–62. https://doi.org/10.12989/CAC.2020.26.1.053.

    Article  Google Scholar 

  49. Selmi A. Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam. Smart Struct Syst. 2020;26(3):361–71. https://doi.org/10.12989/SSS.2020.26.3.361.

    Article  Google Scholar 

  50. Abed ZAK, Majeed WI. Effect of boundary conditions on harmonic response of laminated plates. Composite Mater Eng. 2020;2(2):125–40. https://doi.org/10.12989/cme.2020.2.2.125.

    Article  Google Scholar 

  51. Madenci E, Gülcü Ş. Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM. Struct Eng Mech. 2020;75(5):633–42. https://doi.org/10.12989/sem.2020.75.5.633.

    Article  Google Scholar 

  52. Madenci E, Özütok A. Variational approximate for high order bending analysis of laminated composite plates. Struct Eng Mech. 2020;73(1):97–108. https://doi.org/10.12989/sem.2020.73.1.097.

    Article  Google Scholar 

  53. Madenci E. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches. Adv Nano Res. 2021;11(2):157–71. https://doi.org/10.12989/anr.2021.11.2.157.

    Article  Google Scholar 

  54. Madenci E. Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM. Steel Composite Struct. 2021;39(5):493–509. https://doi.org/10.12989/scs.2021.39.5.493.

    Article  Google Scholar 

  55. Yahea HT, Majeed WI. Free vibration of laminated composite plates in thermal environment using a simple four variable plate theory. Composite Mater Eng. 2021;3(3):179–99. https://doi.org/10.12989/cme.2021.3.3.179.

    Article  Google Scholar 

Download references

Acknowledgements

“This research work was funded by Institutional Fund Projects under grant no. (IFPHI-080-156-2020). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia”.

Funding

The authors declared that there are no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mahmoud.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Research involving human participants and/or animals

The authors declared that this research does not involve human and/or animal participants.

Informed consent

This paper has not been published elsewhere nor has it been submitted for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, S.R., Ghandourah, E., Algarni, A. et al. On thermo-mechanical bending response of porous functionally graded sandwich plates via a simple integral plate model. Archiv.Civ.Mech.Eng 22, 186 (2022). https://doi.org/10.1007/s43452-022-00506-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00506-5

Keywords

Navigation