Skip to main content

Advertisement

Log in

Microstructure, residual stress and mechanical properties of double carbides cermet coatings manufactured on AZ31 substrate by high velocity oxy-fuel spraying

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The study investigated the microstructures, residual stress and mechanical properties of double carbides cermet coatings manufactured on AZ31 magnesium alloy substrate by high-velocity oxy-fuel spraying (HVOF). The HVOF spraying was carried out using a JP 5000 TAFA spray system and the commercially available powder WC-20Cr3C2-7Ni was used to manufacture coatings. The variable process parameter was spray distance (320, 360 and 400 mm). The top surfaces of the manufactured coatings are typical for HVOF coatings and is relatively smooth. Nevertheless, some irregularities and voids are observed. All coatings exhibit dense structure with relatively low porosity level (below 3 vol. %) as well as a robust mechanical binding to the substrate which indicates high adhesion. More deep microstructure analysis carried out by TEM microscopy revealed two types of precipitation: WC hexagonal phase in the space group P-6m2 with irregular shape and size as well as Cr7C3 orthorhombic one, in the space group P nma with a rounded shape and regular size. Phase composition after the spraying process indicates the hexagonal WC phase as the main one. Additionally, two chromium carbides phases, Cr3C2 and Cr3C7 have been identified. A small peak of hexagonal W2C carbide was found as well. Analysis of residual stress showed that both components of linear stress for all deposited coatings have a compressive nature. The increasing spray distance caused an increase of the linear stress values, from – 72.7 up to – 131.5 MPa for δ11 and from – 57.2 up to – 112.2 MPa for δ22. Such values could suggest that thermal stress generated during coating deposition was also low. In the case of the shear stress the values are much lower than linear one, but with the same tendency, increasing with longer spray distance: 14.2, 21.0 and 32.2 MPa for 320, 360 and 400 mm, respectively. The obtained results of HIT show a slight influence on the spray distance. With the increasing spraying distance, the value of hardness decreasing: 12.96, 12.53 and 11.76 GPa according to SD equal to 320, 360 and 400 mm, respectively. Similar was in the case of the EIT values: 315, 309 and 304 GPa for 320, 360 and 400 mm, respectively. All values of the fracture toughness were in the range between 3.5 and 4.0 MPa m1/2, with little influece of the spray distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

We confirm that all data can be available.

References

  1. Hirsch J. Recent development in aluminium for automotive applications. Trans Nonferrous Metals Soc China. 2014;24:1995–2002. https://doi.org/10.1016/S1003-6326(14)63305-7.

    Article  Google Scholar 

  2. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des (1980-2015). 2014;56:862–71. https://doi.org/10.1016/j.matdes.2013.12.002.

    Article  Google Scholar 

  3. Gupta M, Sharon NML. Magnesium, magnesium alloys, and magnesium composites. 1st ed. Wiley; 2011. https://doi.org/10.1002/9780470905098.

    Book  Google Scholar 

  4. Kim S-H, Kim H, Kim NJ. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature. 2015;518:77–9. https://doi.org/10.1038/nature14144.

    Article  Google Scholar 

  5. Ghali E. Corrosion resistance of aluminum and magnesium alloys: understanding, performance, and testing. Hoboken: John Wiley; 2010.

    Book  Google Scholar 

  6. Dong H. Surface engineering of light alloys aluminium, magnesium and titanium alloys. New Delhi: Woodhead Publishing; 2010.

    Book  Google Scholar 

  7. Shu DW, Ahmad IR. Magnesium alloys: an alternative for aluminium in structural applications. Adv Mater Res. 2010;168–170:1631–5. https://doi.org/10.4028/www.scientific.net/AMR.168-170.1631

    Article  Google Scholar 

  8. Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magnesium Alloys. 2017;5:286–312. https://doi.org/10.1016/j.jma.2017.08.003.

    Article  Google Scholar 

  9. Pardo A, Merino MC, Mohedano M, Casajús P, Coy AE, Arrabal R. Corrosion behaviour of Mg/Al alloys with composite coatings. Surf Coat Technol. 2009;203:1252–63. https://doi.org/10.1016/j.surfcoat.2008.10.030.

    Article  Google Scholar 

  10. Zhang L, Yang S, Lv X, Jie X. Wear and Corrosion Resistance of Cold-Sprayed Cu-Based Composite Coatings on Magnesium Substrate. J Therm Spray Tech. 2019;28:1212–24. https://doi.org/10.1007/s11666-019-00887-9.

    Article  Google Scholar 

  11. Guo KW. A review of magnesium/magnesium alloys corrosion and its protection, recent pat. Corros Sci. 2010;2:13–21. https://doi.org/10.2174/1877610801002010013.

    Article  Google Scholar 

  12. Gnanavelbabu A, Prahadeeswaran M, Rai R, Ross NS, Gupta MK. Tribo-corrosive wear behaviour of squeeze-casted Mg/TiN/hBN composite under different ageing temperature. Tribol Int. 2023;187: 108748. https://doi.org/10.1016/j.triboint.2023.108748.

    Article  Google Scholar 

  13. Gnanavelbabu A, Vinothkumar E, Ross NS, Rai R, Kuntoğlu M. Investigating the influence of NaCl concentration on the electrochemical corrosion behavior of metal oxide reinforced magnesium matrix composites. Archiv Civ Mech Eng. 2023;23:113. https://doi.org/10.1007/s43452-023-00658-y.

    Article  Google Scholar 

  14. Hu R-G, Zhang S, Bu J-F, Lin C-J, Song G-L. Recent progress in corrosion protection of magnesium alloys by organic coatings. Prog Org Coat. 2012;73:129–41. https://doi.org/10.1016/j.porgcoat.2011.10.011.

    Article  Google Scholar 

  15. Ghosh R, Thota HK, Rani RU. Corrosion resistance and thermo-optical properties of lithium polysilicate spray coated anodized AZ31B magnesium alloy for space applications. Corros Sci Technol. 2019;18:182–9. https://doi.org/10.14773/CST.2019.18.5.182.

    Article  Google Scholar 

  16. Wang S, Wang Y, Cao G, Chen J, Zou Y, Yang B, Ouyang J, Jia D, Zhou Y. Highly reliable double-layer coatings on magnesium alloy surfaces for robust superhydrophobicity, chemical durability and electrical property. Ceram Int. 2021;47:35037–47. https://doi.org/10.1016/j.ceramint.2021.09.045.

    Article  Google Scholar 

  17. Mondal AK, Kumar S, Blawert C, Dahotre NB. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy. Surf Coat Technol. 2008;202:3187–98. https://doi.org/10.1016/j.surfcoat.2007.11.030.

    Article  Google Scholar 

  18. Morelli S, Rombolà G, Bolelli G, Lopresti M, Puddu P, Boccaleri E, Seralessandri L, Palin L, Testa V, Milanesio M, Lusvarghi L. Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surf Coat Technol. 2022;451: 129056. https://doi.org/10.1016/j.surfcoat.2022.129056.

    Article  Google Scholar 

  19. Pawlowski L. The science and engineering of thermal spray coatings. Chichester: Wiley; 2008.

    Book  Google Scholar 

  20. Mardali M, SalimiJazi HR, Karimzadeh F, Luthringer B, Blawert C, Labbaf S. Comparative study on microstructure and corrosion behavior of nanostructured hydroxyapatite coatings deposited by high velocity oxygen fuel and flame spraying on AZ61 magnesium based substrates. Appl Surf Sci. 2019;465:614–24. https://doi.org/10.1016/j.apsusc.2018.09.127.

    Article  Google Scholar 

  21. Bansal P, Singh G, Sidhu HS. Plasma-sprayed hydroxyapatite-strontium coating for improved corrosion resistance and surface properties of biodegradable AZ31 Mg alloy for biomedical applications. J Mater Eng erform. 2021;30:1768–79. https://doi.org/10.1007/s11665-021-05490-0.

    Article  Google Scholar 

  22. Marzbanrad B, Razmpoosh MH, Toyserkani E, Jahed H. Role of heat balance on the microstructure evolution of cold spray coated AZ31B with AA7075. J Magnesium Alloys. 2021;9:1458–69. https://doi.org/10.1016/j.jma.2021.03.009.

    Article  Google Scholar 

  23. Fauchais PL, Heberlein JVR, Boulos MI. Thermal spray fundamentals. Boston: Springer US; 2014. https://doi.org/10.1007/978-0-387-68991-3.

    Book  Google Scholar 

  24. García-Rodríguez S, López AJ, Torres B, Rams J. 316L stainless steel coatings on ZE41 magnesium alloy using HVOF thermal spray for corrosion protection. Surf Coat Technol. 2016;287:9–19. https://doi.org/10.1016/j.surfcoat.2015.12.075.

    Article  Google Scholar 

  25. Zhang H, Wang S, Yang X, Hao S, Chen Y, Li H, Pan D. Interfacial characteristic and microstructure of Fe-based amorphous coating on magnesium alloy. Surf Coat Technol. 2021;425: 127659. https://doi.org/10.1016/j.surfcoat.2021.127659.

    Article  Google Scholar 

  26. Jonda E, Łatka L, Maciej A, Khozhanov A. Investigations on the microstructure and corrosion performance of different WC-based cermet coatings deposited by high velocity oxy fuel process onto magnesium alloy substrate. Adv Sci Technol Res J. 2023;17:25–35. https://doi.org/10.12913/22998624/160513.

    Article  Google Scholar 

  27. Jonda E, Szala M, Sroka M, Łatka L, Walczak M. Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Appl Surf Sci. 2023;608: 155071. https://doi.org/10.1016/j.apsusc.2022.155071.

    Article  Google Scholar 

  28. Oladijo OP, Venter AM, Cornish LA, Sacks N. X-ray diffraction measurement of residual stress in WC-Co thermally sprayed coatings onto metal substrates. Surf Coat Technol. 2012;206:4725–9. https://doi.org/10.1016/j.surfcoat.2012.01.044.

    Article  Google Scholar 

  29. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20. https://doi.org/10.1557/jmr.2004.19.1.3.

    Article  Google Scholar 

  30. Chicot D. Hardness length-scale factor to model nano- and micro-indentation size effects. Mater Sci Eng, A. 2009;499:454–61. https://doi.org/10.1016/j.msea.2008.09.040.

    Article  Google Scholar 

  31. Łatka L, Chicot D, Cattini A, Pawłowski L, Ambroziak A. Modeling of elastic modulus and hardness determination by indentation of porous yttria stabilized zirconia coatings. Surf Coat Technol. 2013;220:131–9. https://doi.org/10.1016/j.surfcoat.2012.07.025.

    Article  Google Scholar 

  32. Faisal NH, Ahmed R, Prathuru AK, Spence S, Hossain M, Steel JA. An improved Vickers indentation fracture toughness model to assess the quality of thermally sprayed coatings. Eng Fract Mech. 2014;128:189–204. https://doi.org/10.1016/j.engfracmech.2014.07.015.

    Article  Google Scholar 

  33. Garbiec D, Siwak P. Microstructural evolution and development of mechanical properties of spark plasma sintered WC–Co cemented carbides for machine parts and engineering tools. Arch Civ Mech Eng. 2019;19:215–23. https://doi.org/10.1016/j.acme.2018.10.004.

    Article  Google Scholar 

  34. Evans AG, Wilshaw TR. Quasi-static solid particle damage in brittle solids—I. Observations analysis and implications. Acta Metallur. 1976;24:939–56. https://doi.org/10.1016/0001-6160(76)90042-0.

    Article  Google Scholar 

  35. Myalska H, Szymański K, Moskal G. Microstructure and selected properties of WC-Co-Cr coatings deposited by high velocity thermal spray processes. SSP. 2016;246:117–22. https://doi.org/10.4028/www.scientific.net/SSP.246.117.

    Article  Google Scholar 

  36. Bhosale DG, Rathod WS. Tribo-behaviour of APS and HVOF sprayed WC–Cr 3 C 2 –Ni coatings for gears. Surf Eng. 2021;37:80–90. https://doi.org/10.1080/02670844.2020.1742988.

    Article  Google Scholar 

  37. Ding X, Ke D, Yuan C, Ding Z, Cheng X. Microstructure and cavitation erosion resistance of HVOF deposited WC-Co coatings with different sized WC. Coatings. 2018;8:307. https://doi.org/10.3390/coatings8090307.

    Article  Google Scholar 

  38. Ahmed R, Ali O, Berndt CC, Fardan A. Sliding wear of conventional and suspension sprayed nanocomposite WC-Co coatings: an invited review. J Therm Spray Tech. 2021;30:800–61. https://doi.org/10.1007/s11666-021-01185-z.

    Article  Google Scholar 

  39. Karaoglanli AC, Oge M, Doleker KM, Hotamis M. Comparison of tribological properties of HVOF sprayed coatings with different composition. Surf Coat Technol. 2017;318:299–308. https://doi.org/10.1016/j.surfcoat.2017.02.021.

    Article  Google Scholar 

  40. Cabral-Miramontes JA, Gaona-Tiburcio C, Almeraya-Calderón F, Estupiñan-Lopez FH, Pedraza-Basulto GK, Poblano-Salas CA. Parameter studies on high-velocity oxy-fuel spraying of CoNiCrAlY coatings used in the aeronautical industry. Int J Corros. 2014;2014:1–8. https://doi.org/10.1155/2014/703806.

    Article  Google Scholar 

  41. Niemczewska-Wójcik M, Mańkowska-Snopczyńska A, Piekoszewski W. The investigation of wear tracks with the use of noncontact measurement methods, Archives of Civil and Mechanical. Engineering. 2013;13:158–67. https://doi.org/10.1016/j.acme.2013.01.005.

    Article  Google Scholar 

  42. Mayrhofer E, Janka L, Mayr WP, Norpoth J, Rodriguez Ripoli M, Gröschl M. Cracking resistance of Cr3C2–NiCr and WC–Cr3C2–Ni thermally sprayed coatings under tensile bending stress. Surf Coat Technol. 2015;281:169–75. https://doi.org/10.1016/j.surfcoat.2015.09.002.

    Article  Google Scholar 

  43. Song B, Murray JW, Wellman RG, Pala Z, Hussain T. Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings. Wear. 2020;442–443: 203114. https://doi.org/10.1016/j.wear.2019.203114.

    Article  Google Scholar 

  44. Raza A, Ahmad F, Badri TM, Raza MR, Malik K. An influence of oxygen flow rate and spray distance on the porosity of HVOF coating and its effects on corrosion—a review. Materials. 2022;15:6329. https://doi.org/10.3390/ma15186329.

    Article  Google Scholar 

  45. Qiao L, Wu Y, Hong S, Long W, Cheng J. Wet abrasive wear behavior of WC-based cermet coatings prepared by HVOF spraying. Ceram Int. 2021;47:1829–36. https://doi.org/10.1016/j.ceramint.2020.09.009.

    Article  Google Scholar 

  46. Litasov KD, Shatskiy A, Fei Y, Suzuki A, Ohtani E, Funakoshi K. Pressure-volume-temperature equation of state of tungsten carbide to 32 GPa and 1673 K. J Appl Phys. 2010;108: 053513. https://doi.org/10.1063/1.3481667.

    Article  Google Scholar 

  47. Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites. J Mater Sci. 2011;46:571–89. https://doi.org/10.1007/s10853-010-5046-7.

    Article  Google Scholar 

  48. Li Y, Gao Y, Xiao B, Min T, Yang Y, Ma S, Yi D. The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J Alloy Compd. 2011;509:5242–9. https://doi.org/10.1016/j.jallcom.2011.02.009.

    Article  Google Scholar 

  49. Ksiazek M, Boron L, Radecka M, Richert M, Tchorz A. Mechanical and tribological properties of HVOF-sprayed (Cr3C2-NiCr+Ni) composite coating on ductile cast iron. J of Materi Eng and Perform. 2016;25:3185–93. https://doi.org/10.1007/s11665-016-2226-x.

    Article  Google Scholar 

  50. Yao H-L, Yang C, Yi D-L, Zhang M-X, Wang H-T, Chen Q-Y, Bai X-B, Ji G-C. Microstructure and mechanical property of high velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings. Surf Coat Technol. 2020;397: 126010. https://doi.org/10.1016/j.surfcoat.2020.126010.

    Article  Google Scholar 

  51. Bolelli G, Berger L-M, Börner T, Koivuluoto H, Lusvarghi L, Lyphout C, Markocsan N, Matikainen V, Nylén P, Sassatelli P, Trache R, Vuoristo P. Tribology of HVOF- and HVAF-sprayed WC–10Co4Cr hardmetal coatings: a comparative assessment. Surf Coat Technol. 2015;265:125–44. https://doi.org/10.1016/j.surfcoat.2015.01.048.

    Article  Google Scholar 

  52. Jonda E, Łatka L, Tomiczek A, Godzierz M, Pakieła W, Nuckowski P. Microstructure investigation of WC-based coatings prepared by HVOF onto AZ31 substrate. Materials. 2021;15:40. https://doi.org/10.3390/ma15010040.

    Article  Google Scholar 

  53. Jonda E, Łatka L, Godzierz M, Maciej A. Investigations of microstructure and corrosion resistance of WC-Co and WC-Cr3C2-Ni coatings deposited by HVOF on magnesium alloy substrates. Surf Coat Technol. 2023;459: 129355. https://doi.org/10.1016/j.surfcoat.2023.129355.

    Article  Google Scholar 

  54. Santana YY, Renault PO, Sebastiani M, La Barbera JG, Lesage J, Bemporad E, Le Bourhis E, Puchi-Cabrera ES, Staia MH. Characterization and residual stresses of WC–Co thermally sprayed coatings. Surf Coat Technol. 2008;202:4560–5. https://doi.org/10.1016/j.surfcoat.2008.04.042.

    Article  Google Scholar 

  55. Nohava J, Mušálek R, Matějíček J, Vilémová M. A contribution to understanding the results of instrumented indentation on thermal spray coatings—case study on Al2O3 and stainless steel. Surf Coat Technol. 2014;240:243–9. https://doi.org/10.1016/j.surfcoat.2013.12.033.

    Article  Google Scholar 

  56. Łatka L, Pawlowski L, Chicot D, Pierlot C, Petit F. Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surf Coat Technol. 2010;205:954–60. https://doi.org/10.1016/j.surfcoat.2010.06.025.

    Article  Google Scholar 

  57. Bolelli G, Berger L-M, Bonetti M, Lusvarghi L. Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W, Cr)2C–Ni and WC–CoCr hardmetal coatings. Wear. 2014;309:96–111. https://doi.org/10.1016/j.wear.2013.11.001.

    Article  Google Scholar 

  58. Ji D-H, Zhuang H, Hu Q, Yao H, Zhang Y, Guo H, Zhao H, Shen M. Effect of abrasive particle size on the tribological behavior of thermal sprayed WC-Cr3C2-Ni coatings. J Alloy Compd. 2022;924: 166536. https://doi.org/10.1016/j.jallcom.2022.166536.

    Article  Google Scholar 

  59. Fauchais P, Montavon G, Lima RS, Marple BR. Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D: Appl Phys. 2011;44: 093001. https://doi.org/10.1088/0022-3727/44/9/093001.

    Article  Google Scholar 

  60. Ang ASM, Berndt CC. A review of testing methods for thermal spray coatings. Int Mater Rev. 2014;59:179–223. https://doi.org/10.1179/1743280414Y.0000000029.

    Article  Google Scholar 

  61. Chen Y, Wu Y, Hong S, Long W, Ji X. The effect of impingement angle on erosion wear characteristics of HVOF sprayed WC-Ni and WC-Cr 3 C 2 -Ni cermet composite coatings. Mater Res Express. 2020;7: 026503. https://doi.org/10.1088/2053-1591/ab6d31.

    Article  Google Scholar 

  62. Goyal AK, Sapate SG, Mehar S, Vashishtha N, Bagde P, Rathod A. Tribological properties of HVOF sprayed WC-Cr 3 C 2 -Ni coating. Mater Res Express. 2019;6: 106415. https://doi.org/10.1088/2053-1591/ab3946.

    Article  Google Scholar 

  63. Lima MM, Godoy C, Modenesi PJ, Avelar-Batista JC, Davison A, Matthews A. Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings. Surf Coat Technol. 2004;177–178:489–96. https://doi.org/10.1016/S0257-8972(03)00917-4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Resurs Company, Warszawa, Poland for help in HVOF spraying. Publication supported by the rector's pro-quality grant. Silesian University of Technology, grant no. 10/010/RGJ22/1084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Jonda.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jonda, E., Łatka, L., Godzierz, M. et al. Microstructure, residual stress and mechanical properties of double carbides cermet coatings manufactured on AZ31 substrate by high velocity oxy-fuel spraying. Archiv.Civ.Mech.Eng 24, 61 (2024). https://doi.org/10.1007/s43452-024-00867-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-024-00867-z

Keywords

Navigation