Skip to main content

Advertisement

Log in

Plasma-Sprayed Hydroxyapatite-Strontium Coating for Improved Corrosion Resistance and Surface Properties of Biodegradable AZ31 Mg Alloy for Biomedical Applications

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Magnesium and its alloys have been introduced as innovative orthopedic implants due to their potential in serving lightweight, bio-active, degradable, and biocompatible properties. Mg and its alloys corrode rapidly in a biological environment and result in losing mechanical properties. However, to enhance corrosion resistance and mechanical properties, Mg alloy was plasma-sprayed with pure hydroxyapatite (HA) and HA-reinforced with strontium (Sr) powder at three levels (4, 8, and 12 wt.%). Surface parameters such as microhardness, surface roughness, and wettability were examined. The electrochemical technique was used to study the corrosion behavior in Ringer’s solution. The outcomes confirmed that with the rise in Sr content in pure HA coatings, the surface properties as well as the corrosion resistance improved significantly. The contact angle of substrates under examination exhibits hydrophilic nature. Collectively, the findings of this study signify HA/Sr reinforced coatings are a promising approach to improve surface properties and corrosion behavior of Mg alloys for future bone implant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Gnanavel, S. Ponnusamy, L. Mohan, R. Radhika, C. Muthamizhchelvan and K. Ramasubramanian, Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks’ Solution, J. Mater. Eng. Perform., 2018, 27, p 1635–1641.

    Article  CAS  Google Scholar 

  2. A.B. Elshalakany, S. Ali, A.A. Mata, A.K. Eessaa, P. Mohan, T.A. Osman and V.A. Borras, Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy, J. Mater. Eng. Perform., 2017, 26, p 1262–1271.

    Article  CAS  Google Scholar 

  3. N.S. Manam, W.S.W. Harun, D.N.A. Shri, S.A.C. Ghani, T. Kurniawan, M.H. Ismail and M.H.I. Ibrahim, Study of Corrosion in Biocompatible Metals for Implants: A Review, J. Alloy. Compd., 2017, 701, p 698–715.

    Article  CAS  Google Scholar 

  4. S. Bose and S. Tarafder, Calcium Phosphate Ceramic Systems in Growth Factor and Drug Delivery for Bone Tissue Engineering: A Review, Acta. Biomater., 2012, 8, p 1401–1421.

    Article  CAS  Google Scholar 

  5. M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants: A Review, Prog. Mater. Sci., 2009, 54, p 397–425.

    Article  CAS  Google Scholar 

  6. M.A. Hussein, M. Azeem, A.M. Kumar, N. Al-Aqeeli, N.K. Ankah and A.A. Sorour, Influence of Thermal Treatment on the Microstructure, Mechanical Properties, and Corrosion Resistance of Newly Developed Ti20Nb13Zr Biomedical Alloy in a Simulated Body Environment, J. Mater. Eng. Perform., 2019, 28, p 1337–1349.

    Article  CAS  Google Scholar 

  7. Y. Sasikumar, A.M. Kumar, R.S. Babu, P. Dhaiveegan, N.A. Aqeeli and A.L.F. Barros, Fabrication of Brushite Coating on AZ91D and AZ31 Alloys by Two-Step Chemical Treatment and Its Surface Protection in Simulated Body Fluid, J. Mater. Eng. Perform., 2019, 28, p 3803–3815.

    Article  CAS  Google Scholar 

  8. Z. Cui, W. Li, L. Cheng, D. Gong, W. Cheng and W. Wang, Effect of Nano-HA Content on the Mechanical Properties, Degradation and Biocompatible Behavior of Mg-Zn/HA Composite Prepared by Spark Plasma Sintering, Mater. Charact., 2019, 151, p 620–631.

    Article  CAS  Google Scholar 

  9. E.S. Bogyaa, Z. Karoly and R. Barabasd, Atmospheric Plasma Sprayed Silica–Hydroxyapatite Coatings on Magnesium Alloy Substrates, Ceram. Int., 2015, 41, p 6005–6012.

    Article  CAS  Google Scholar 

  10. I.S. Roncevic, Z. Grubac and M.M. Hukovic, Electrodeposition of Hydroxyapatite Coating on AZ91D Alloy for Biodegradable Implant Application, Int. J. Electrochem. Sci., 2014, 9, p 5907–5923.

    Google Scholar 

  11. Y.L. Gao, Y. Liu and X.Y. Song, Plasma-Sprayed Hydroxyapatite Coating for Improved Corrosion Resistance and Bioactivity of Magnesium Alloy, J. Therm. Spray Technol., 2018, 27, p 1–7.

    Article  CAS  Google Scholar 

  12. M. Supovan, Substituted Hydroxyapatites for Biomedical Applications: A Review, Ceram. Int., 2015, 41, p 9203–9231.

    Article  CAS  Google Scholar 

  13. S. Zhou, Y. Bai, W. Ma and W. Chen, Suspension Plasma-Sprayed Fluoridated Hydroxyapatite/Calcium Silicate Composite Coatings for Biomedical Applications, J. Therm. Spray Technol., 2019, 28, p 1025–1038.

    Article  CAS  Google Scholar 

  14. N. Bosh, H.M. Jovein and C. Muller, Determination of Triaxial Residual Stress in Plasma-Sprayed Hydroxyapatite (HAp) Deposited on Titanium Substrate by X-ray Diffraction, J. Therm. Spray Technol., 2018, 27, p 1–13.

    Article  CAS  Google Scholar 

  15. M. Ohki, S. Takahashi, R. Jinnai and T. Hoshina, Interfacial Strength of Plasma-sprayed Hydroxyapatite Coatings, J. Therm. Spray Technol., 2020, 29, p 1119–1133.

    Article  CAS  Google Scholar 

  16. V. Deram, C. Minichiello, R.N. Vannier, A.L. Maguer, L. Pawlowski and D. Murano, Microstructural Characterizations of Plasma Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2003, 166, p 153–159.

    Article  CAS  Google Scholar 

  17. M. Ramadas, G. Bharath, N. Ponpandian and A.M. Ballamurugan, Investigation on Biophysical Properties of Hydroxyapatite/Graphene Oxide (HAp/GO) Based Binary Nanocomposite for Biomedical Applications, Mater. Chem. Phys., 2017, 199, p 179–184.

    Article  CAS  Google Scholar 

  18. S. Dyshlovenko, C. Pierlot, L. Pawlowski, R. Tomaszek and P. Chagnon, Experimental Design of Plasma Spraying and Laser Treatment of Hydroxyapatite Coatings, Surf. Coat. Technol., 2006, 201, p 2054–2060.

    Article  CAS  Google Scholar 

  19. Y. Sasikumar, M. Karthega and N. Rajendran, In Vitro Bioactivity of Surface-Modified β-Ti Alloy for Biomedical Applications, J. Mater. Eng. Perform., 2011, 20, p 1271–1277.

    Article  CAS  Google Scholar 

  20. B. Moore, E. Asadi and G. Lewis, Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants: A Review, Adv. Mater. Sci. Eng., 2017, 2017, p 1–9.

    Article  CAS  Google Scholar 

  21. P. Gkomoza, M. Vardavoulias, D.I. Pantelis and C. Sarafoglou, Comparative Study of Structure and Properties of Thermal Spray Coatings Using Conventional and Nanostructured Hydroxyapatite Powder, for Applications in Medical Implants, Surf. Coat. Technol., 2019, 357, p 748–758.

    Article  CAS  Google Scholar 

  22. R. Kumari and J.D. Majumdar, Heat-Treated TiO2 Plasma Spray Deposition for Bioactivity Improvement in Ti-6Al-4V Alloy, J. Mater. Eng. Perform., 2017, 26, p 6207–6218.

    Article  CAS  Google Scholar 

  23. Y.C. Yang and C.Y. Yang, Mechanical and Histological Evaluation of a Plasma Sprayed Hydroxyapatite Coating on a Titanium Bond Coat, Ceram. Int., 2013, 39, p 6509–6516.

    Article  CAS  Google Scholar 

  24. R.B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Therm. Spray Technol., 2016, 25, p 827–850.

    Article  CAS  Google Scholar 

  25. A. Srinivasan and N. Rajendran, Electrochemical Corrosion and In Vitro Bioactivity of SiO2:ZrO2-Coated 316L Stainless Steel in Simulated Body Fluid, J. Mater. Eng. Perform., 2015, 24, p 3056–3067.

    Article  CAS  Google Scholar 

  26. K. Li, J. Yu, Y. Xie, L. Huang, X. Ye and X. Zheng, Effects of Zn Content on Crystal Structure, Cytocompatibility, Antibacterial Activity, and Chemical Stability in Zn-Modified Calcium Silicate Coatings, J. Therm. Spray Technol., 2013, 22, p 1–9.

    Article  Google Scholar 

  27. Y. Li, X. Shui, L. Zhang and J. Hu, Cancellous Bone Healing Around Strontium-Doped Hydroxyapatite in Osteoporotic Rats Previously Treated with Zoledronic Acid, J. Biomed. Mater. Res. B, 2015, 104, p 476–481.

    Article  CAS  Google Scholar 

  28. J.H. Shepherd and D.V. Shepherd, Best, Substituted Hydroxyapatites for Bone Repair, J. Mater. Sci. Mater. Med., 2012, 23, p 2335–2347.

    Article  CAS  Google Scholar 

  29. L. Xu, E. Zhang, D. Yin, S. Zeng and K. Yang, In Vitro Corrosion Behavior of Mg Alloys in a Phosphate Buffered Solution for Bone Implant Application, J. Mater. Sci. Mater. Med., 2008, 19, p 1017–1025.

    Article  CAS  Google Scholar 

  30. A.R. Boyd, L. Rutledge, L.D. Randolph and B.J. Meenan, Strontium-Substituted Hydroxyapatite Coatings Deposited Via a Co-deposition Sputter Technique, Mater. Sci. Eng. C, 2015, 46, p 290–300.

    Article  CAS  Google Scholar 

  31. D. Gopi, A. Karthika, D. Rajeswari, L. Kavitha, R. Pramod and J. Dwivedi, Investigation on Corrosion Protection and Mechanical Performance of Minerals Substituted Hydroxyapatite Coating on HELCDEB-Treated Titanium Using Pulsed Electrodeposition Method, RSC Adv., 2014, 66, p 34751–34759.

    Article  CAS  Google Scholar 

  32. K. Ozeki, T. Goto, H. Aoki and T. Masuzawa, Characterization of Sr-Substituted Hydroxyapatite Thin Film by Sputtering Technique from Mixture Targets of Hydroxyapatite and Strontium Apatite, Bio Med. Mater. Eng., 2014, 24, p 1447–1456.

    Article  CAS  Google Scholar 

  33. H.S. Fekri, M. Ranjbar, G.D. Noudeh and N. Ziasistani, Green Synthesis of Strontium Nanoparticles Self-assembled in the Presence of Carboxymethyl Cellulose: An In Vivo Imaging Study, J. Bio. Chem. Lumin., 2019, 34, p 1–7.

    Google Scholar 

  34. R.B. Heimann, Plasma-Sprayed Hydroxylapatite Coatings as Biocompatible Intermediaries Between Inorganic Implant Surfaces and Living Tissue, J. Therm. Spray Technol., 2018, 27, p 1212–1237.

    Article  CAS  Google Scholar 

  35. A. Singh, G. Singh and V. Chawla, Characterization and Mechanical Behaviour of Reinforced Hydroxyapatite Coatings Deposited by Vacuum Plasma Spray on SS-316L Alloy, J. Mech. Behav. Biomed. Mater., 2018, 79, p 273–282.

    Article  CAS  Google Scholar 

  36. A.R. Kmita, A. Slosarczyk, Z. Paszkiewicz and D. Paluch, Evaluation of HAp-ZrO2 Composites and Monophase Hap Bioceramics. Vitro Study, J. Mater. Sci., 2004, 39, p 5865–5867.

    Article  Google Scholar 

  37. J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias and A. Agarwal, Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility, Mater. Sci. Eng. C, 2009, 29, p 2195–2202.

    Article  CAS  Google Scholar 

  38. L. Sun, C.C. Berndt, K.A. Gross and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 58, p 570–592.

    Article  CAS  Google Scholar 

  39. M. Shaban, F. Mohamed and S. Abdallah, Production and Characterization of Superhydrophobic and Antibacterial Coated Fabrics Utilizing ZnO Nanocatalyst, Sci. Rep., 2018, 8, p 3925–3940.

    Article  CAS  Google Scholar 

  40. L.G. Ellies, D.G.A. Nelson and J.D.B. Featherstone, Crystallographic Changes in Calcium Phosphates During Plasmaspraying, Biomaterials, 1992, 13, p 313–316.

    Article  CAS  Google Scholar 

  41. B. Singh, G. Singh and B.S. Sidhu, Investigation of the In Vitro Corrosion Behavior and Biocompatibility of Niobium (Nb)-Reinforced Hydroxyapatite (HA) Coating on CoCr Alloy for Medical Implants, J. Mater. Res., 2019, 34, p 1678–1691.

    Article  CAS  Google Scholar 

  42. M. Roy, A. Bandyopadhyay and S. Bose, Induction Plasma Sprayed Sr and Mg Doped Nano Hydroxyapatite Coatings on Ti for Bone Implant, J Biomed. Mater. Res. B Appl. Biomater, 2011, 99, p 258–265.

    Article  CAS  Google Scholar 

  43. B. Singh, G. Singh and B.S. Sidhu, Analysis of Corrosion Behaviour and Surface Properties of Plasma-Sprayed Composite Coating of Hydroxyapatite–Tantalum on Biodegradable Mg Alloy ZK60, J. Compos. Mater., 2019, 53, p 2661–2673.

    Article  CAS  Google Scholar 

  44. C.W. Kang and F.Z. Fang, State of the Art of Bioimplants Manufacturing, Adv. Manuf., 2018, 6, p 20–40.

    Article  CAS  Google Scholar 

  45. G. Singh, S. Singh and S. Prakash, Surface Characterization of Plasma Sprayed Pure and Reinforced Hydroxyapatite Coating on Ti6Al4V Alloy, Surf. Coat. Technol., 2011, 205, p 4814–4820.

    Article  CAS  Google Scholar 

  46. B. Singh, G. Singh and B.S. Sidhu, Analysis of Corrosion Behavior and Surface Properties of Plasma-Sprayed HA/Ta Coating on CoCr Alloy, J. Therm. Spray Technol., 2018, 27, p 1401–1413.

    Article  CAS  Google Scholar 

  47. X. Zhao, C. Peng and J. You, Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance, J. Therm. Spray Technol., 2017, 26, p 1301–1308.

    Article  CAS  Google Scholar 

  48. D. Yamashita, M. Machigashira, M. Miyamoto, H. Takeuchi, K. Noguchi, Y. Izumi and S. Ban, Effect of Surface Roughness on Initial Responses of Osteoblast-Like Cells on Two Types of Zirconia, Dent. Mater. J., 2009, 28, p 461–470.

    Article  CAS  Google Scholar 

  49. F.A. Shah, M.L. Johansson, O. Omar, H. Simonsson, A. Palmquist and P. Thomsen, Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems, PLoS ONE, 2016, 11, p 1–24.

    Article  CAS  Google Scholar 

  50. K.A. Gross and M. Babovic, Influence of Abrasion on the Surface Characteristics of Thermally Sprayed Hydroxyapatite Coatings, Biomaterals., 2002, 23, p 4731–4737.

    Article  CAS  Google Scholar 

  51. W. Wang, G. Caetano, W.S. Ambler, J.J. Blaker, M.A. Frade, P. Mandal, C. Diver and P. Bartolo, Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering, Materials, 2016, 992, p 1–11.

    Article  Google Scholar 

  52. S. Durdu, K. Korkmaz, S.L. Aktug and A. Cakir, Characterization and Bioactivity of Hydroxyapatite-Based Coatings Formed on Steel by Electro-Spark Deposition and Micro-Arc Oxidation, Surf. Coat. Technol., 2017, 326, p 1–41.

    Article  CAS  Google Scholar 

  53. B. Houa, Y. Liua, H. Chena and Y. Yanga, In vitro Bioactivity, Bio-Corrosion Resistance and Antibacterial Property of Laser Cladded HA Coatings with Different Content of ZnO on Ti-6Al-4V Substrate, Mater. Res., 2019, 22, p 1–10.

    Google Scholar 

  54. M. Sankar, S. Suwas, S. Balasubramanian and G. Manivasagam, Comparison of Electrochemical Behavior of Hydroxyapatite Coated onto WE43 Mg Alloy by Electrophoretic and Pulsed Laser Deposition, Surf. Coat. Technol., 2017, 309, p 840–848.

    Article  CAS  Google Scholar 

  55. T.P.S. Sarao, H. Singh and H. Singh, Enhancing Biocompatibility and Corrosion Resistance of Ti-6Al-4V Alloy by Surface Modification Route, J. Therm. Spray Technol., 2018, 27, p 1388–1400.

    Article  Google Scholar 

  56. S. Stojadinovic, N. Tadic, N. Radic, B. Grbic and R. Vasilic, MgO/ZnO Coatings Formed on Magnesium Alloy AZ31 by Plasma Electrolytic Oxidation: Structural, Photoluminescence and Photocatalytic Investigation, Surf. Coat. Technol., 2017, 310, p 98–105.

    Article  CAS  Google Scholar 

  57. J. Kim, H.M. Mousa, C.H. Park and C.S. Kim, Enhanced Corrosion Resistance and Biocompatibility of AZ31 Mg Alloy Using PCL/ZnO NPs via Electrospinning, Appl. Surf. Sci., 2017, 396, p 249–258.

    Article  CAS  Google Scholar 

  58. M.H. Fathi and F. Azam, Novel Hydroxyapatite/Tantalum Surface Coating for Metallic Dental Implant, Mater. Lett., 2007, 61, p 1238–1241.

    Article  CAS  Google Scholar 

  59. G. Singh, H. Singh and B.S. Sidhu, Corrosion Behavior of Plasma Sprayed Hydroxyapatite and Hydroxyapatite-Silicon Oxide Coatings on AISI, 304 for Biomedical Application, Appl. Surf. Sci., 2013, 284, p 811–818.

    Article  CAS  Google Scholar 

  60. S. Dudin, C.M. Cotrut, M. Dinu, A. Zykova, A.C. Parau, S. Yakovin and A. Vladescu, Comparative Study of the Hydroxyapatite Coatings Prepared with/Without Substrate Bias, Ceram. Int., 2017, 43, p 14968–14975.

    Article  CAS  Google Scholar 

  61. R. Walter and M.B. Kannan, Influence of Surface Roughness on the Corrosion Behaviour of Magnesium Alloy, Mater. Des., 2011, 32, p 2350–2354.

    Article  CAS  Google Scholar 

  62. M.F. Hasan, J. Wang and C. Berndt, Determination of the Mechanical Properties of Plasma-Sprayed Hydroxyapatite Coatings Using the Knoop Indentation Technique, J. Therm. Spray Technol., 2015, 24, p 865–877.

    Article  CAS  Google Scholar 

  63. J. Feng, Y. Chen, X. Liu, T. Liu, L. Zou, Y. Wang, Y. Ren, Z. Fan, Y. Lv and M. Zhang, Insitu Hydrothermal Crystallization Mg(OH)2 Films on Magnesium Alloy AZ91 and Their Corrosion Resistance Properties, Mater. Chem. Phys., 2013, 143, p 322–329.

    Article  CAS  Google Scholar 

  64. S. Durdu, S.L. Aktug and K. Korkmaz, Characterization and Mechanical Properties of the Duplex Coatings Produced on Steel by Electro-spark Deposition and Micro-arc Oxidation, Surf. Coat. Technol., 2013, 236, p 303–308.

    Article  CAS  Google Scholar 

  65. S. Mohajernia, S.P. Ali, S. Hejazi, M. Saremi and A.R.K. Rashid, Hydroxyapatite Coating Containing Multi-walled Carbon Nanotubes on AZ31 Magnesium: Mechanical-Electrochemical Degradation in a Physiological Environment, Ceram. Int., 2018, 44, p 8297–8305.

    Article  CAS  Google Scholar 

  66. K.A. Hing, I.R. Gibson, P.A. Revell, S.M. Best and W. Bonfield, Influence of Phase Purity on the In Vivo Response to Hyrdoxyapatite, Key Eng. Mater., 2001, 373, p 192–195.

    Google Scholar 

  67. G.L. Burke, The Corrosion of Metals in Tissues; and an Introduction to Tantalum, Can. Med. Assoc. J., 1940, 43, p 125–128.

    CAS  Google Scholar 

  68. Z. Zhang, M.F. Dunn, T.D. Xiao, A.P. Tomsia and E. Saiz, Nanostructured Hydroxyapatite Coatings for Improved Adhesion and Corrosion Resistance for Medical Implants, Mater. Res. Soc. Symp. Proc., 2002, 703, p 291–297.

    CAS  Google Scholar 

  69. H. Wang, Y. Zheng, C. Jiang, Y. Li and Y. Fu, In Vitro Corrosion Behavior and Cytocompatibility of Pure Fe Implanted with Ta, Surf. Coat. Technol., 2017, 320, p 201–206.

    Article  CAS  Google Scholar 

  70. M. Jamesh, S. Kumar and T.S.N.S. Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21 Mg Alloy in Ringer’s Solution–Long Term Evaluation by EIS, Corros. Sci., 2011, 53, p 645–654.

    Article  CAS  Google Scholar 

  71. F. Geng, L.L. Tan, X.X. Jin, J.Y. Yang and K. Yang, The Preparation, Cytocompatibility, and In Vitro Biodegradation Study of Pure β-TCP on Magnesium, J. Mater. Sci. Mater. Med., 2009, 20, p 1149–1157.

    Article  CAS  Google Scholar 

  72. X.N. Gu, S.S. Li, X.M. Li and Y.B. Fan, Magnesium Based Degradable Biomaterials: A Review, Front. Mater. Sci., 2014, 8, p 200–218.

    Article  Google Scholar 

  73. Y. Xin, C. Liu, X. Zhang, G. Tang, X. Tian and P.K. Chu, Corrosion Behavior of Biomedical AZ91 Magnesium Alloy in Simulated Body Fluids, J. Mater. Res., 2007, 22, p 2004–2011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge Mechanical Engineering Dept., IIT Ropar, India, and Thapar Institute of Engineering and Technology, Patiala, India for providing experimental facilities and surface analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurpreet Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Singh, G. & Sidhu, H.S. Plasma-Sprayed Hydroxyapatite-Strontium Coating for Improved Corrosion Resistance and Surface Properties of Biodegradable AZ31 Mg Alloy for Biomedical Applications. J. of Materi Eng and Perform 30, 1768–1779 (2021). https://doi.org/10.1007/s11665-021-05490-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05490-0

Keywords

Navigation