Skip to main content

Advertisement

Log in

Pharmacometrics: The Already-Present Future of Precision Pharmacology

  • Review
  • Published:
Therapeutic Innovation & Regulatory Science Aims and scope Submit manuscript

Abstract

The use of mathematical modeling to represent, analyze, make predictions or providing information on data obtained in drug research and development has made pharmacometrics an area of great prominence and importance. The main purpose of pharmacometrics is to provide information relevant to the search for efficacy and safety improvements in pharmacotherapy. Regulatory agencies have adopted pharmacometrics analysis to justify their regulatory decisions, making those decisions more efficient. Demand for specialists trained in the field is therefore growing. In this review, we describe the meaning, history, and development of pharmacometrics, analyzing the challenges faced in the training of professionals. Examples of applications in current use, perspectives for the future, and the importance of pharmacometrics for the development and growth of precision pharmacology are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barrett JS, Fossler MJ, Cadieu KD, et al. Pharmacometrics: a multidisciplinary field to facilitate critical thinking in drug development and translational research settings. J Clin Pharmacol. 2008;48(5):632–49.

    Article  Google Scholar 

  2. Chan PLS, Holford NHG. Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol. 2001;41:625–59.

    Article  CAS  Google Scholar 

  3. Gobburu JV, Lesko LJ. Quantitative disease, drug, and trial models. Ann Rev Pharmacol Toxicol. 2008;49:291–301.

    Article  Google Scholar 

  4. Eddy DM, Archimedes SL. A trial-validated model of diabetes. Diabetes Care. 2003;26:3093–101.

    Article  Google Scholar 

  5. Bangs A. Predictive biosimulation and virtual patients in pharmaceutical R and D. Stud Health Technol Inform. 2005;111:37–42.

    Google Scholar 

  6. Landersdorfer CB, Jusko WJ. Pharmacokinetic/pharmacodynamic modelling in diabetes mellitus. Clin Pharmacokinet. 2008;47:417–48.

    Article  CAS  Google Scholar 

  7. Danhof M, de Jongh J, De Lange EC, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007;47:357–400.

    Article  CAS  Google Scholar 

  8. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther. 1997;61:275–91.

    Article  CAS  Google Scholar 

  9. Breimer DD, Danhof M. Relevance of the application of pharmacokinetic pharmacodynamic modelling concepts in drug development. The ‘wooden shoe’ paradigm. Clin Pharmacokinet. 1997;32:259–67.

    Article  CAS  Google Scholar 

  10. Minto C, Schnider T. Expanding clinical applications of population pharmacodynamic modelling. Br J Clin Pharmacol. 1998;46:321–33.

    Article  CAS  Google Scholar 

  11. Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res. 1999;16:176–85.

    Article  CAS  Google Scholar 

  12. Balant LP, Gex FM. Modelling during drug development. Eur J Pharm Biopharm. 2000;50:13–26.

    Article  CAS  Google Scholar 

  13. Holford NH, Kimko HC, Monteleone JP, et al. Simulation of clinical trials. Annu Ver Pharmacol Toxicol. 2000;40:209–34.

    Article  CAS  Google Scholar 

  14. Bonate PL. Clinical trial simulation in drug development. Pharm Res. 2000;17:252–6.

    Article  CAS  Google Scholar 

  15. Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol. 2000;40:67–95.

    Article  CAS  Google Scholar 

  16. Aarons L, Karlsson MO, Mentre F, et al. Role of modelling and simulation in phase I drugdevelopment. Eur J Pharm Sci. 2001;13(2):115–22.

    Article  CAS  Google Scholar 

  17. Meibohm B, Derendorf H. Pharmacokinetic/pharmacodynamic studies in drug product development. J Pharm Sci. 2002;91:18–23.

    Article  CAS  Google Scholar 

  18. Stanski DR, Rowland M, Sheiner LB. Getting the dose right: report from the tenth European Federation of Pharmaceutical Sciences (EUFEPS) conference on optimizing drug development. J Pharmacokinet Pharmacodyn. 2005;32:199–211.

    Article  Google Scholar 

  19. Florian J, Jadhav PR, Amur S, et al. Boceprevir dosing for late responders and null responders: the role of bridging data between treatment-naïve and -experienced subjects. Hepatology. 2013. https://doi.org/10.1002/hep.25843.

    Article  Google Scholar 

  20. Fourie Zirkelbach J, Jackson AJ, Wang Y, et al. Use of partial AUC (PAUC) to evaluate bioequivalence—a case study with complex absorption: methylphenidate. Pharm Res. 2013. https://doi.org/10.1007/s11095-012-0862-x.

    Article  Google Scholar 

  21. Huang SM, Abernethy DR, Wang Y, et al. The utility of modeling and simulation in drug development and regulatory review. J Pharm Sci. 2013;102:2912.

    Article  CAS  Google Scholar 

  22. Lee JY, Wang Y. Use of a biomarker in exposure-response analysis to support dose selection for fingolimod. CPT Pharmacometrics Syst Pharmacol. 2013;2:1.

    Article  CAS  Google Scholar 

  23. Sun W, Laughren TP, Zhu H, et al. Development of a placebo effect model combined with a dropout model for bipolar disorder. J Pharmacokinet Pharmacodyn. 2013;40:359.

    Article  Google Scholar 

  24. Yang J, Zhao H, Garnett C, et al. The combination of exposure-response and case-control analyses in regulatory decision making. J Clin Pharmacol. 2013;53:160.

    Article  Google Scholar 

  25. Younis IR, Laughren TP, Wang Y, et al. An integrated approach for establishing dosing recommendations: paliperidone for the treatment of adolescent schizophrenia. J Clin Psychopharmacol. 2013;33:152.

    Article  CAS  Google Scholar 

  26. Liu J, Chan-Tack KM, Jadhav P, et al. Why did the FDA approve efavirenz 800 mg when co-administered with rifampin? Int J Clin Pharmacol Ther. 2014;52:446.

    Article  CAS  Google Scholar 

  27. Ma L, Zhao L, Xu Y, et al. Clinical endpoint sensitivity in rheumatoid arthritis: modeling and simulation. J Pharmacokinet Pharmacodyn. 2014;41:537.

    Article  CAS  Google Scholar 

  28. Dykstra K, Mehrotra N, Tornøe CW, et al. Reporting guidelines for population pharmacokinetic analyses. J Clin Pharmacol. 2015;42:301.

    CAS  Google Scholar 

  29. Khurana M, Vaidyanathan J, Marathe A, et al. Canagliflozin use in patients with renal impairment-utility of quantitative clinical pharmacology analyses in dose optimization. J Clin Pharmacol. 2015;55:647.

    Article  CAS  Google Scholar 

  30. Lon HK, DuBois DC, Earp JC, et al. Modeling effects of dexamethasone on disease progression of bone mineral density in collagen-induced arthritic rats. Pharmacol Res Perspect. 2015;3:e00169.

    Article  Google Scholar 

  31. Zhou D, Li H, Wang Y, et al. Quantitative characterization of circadian rhythm of pulmonary function in asthmatic patients treated with inhaled corticosteroids. J Pharmacokinet Pharmacodyn. 2015;42:391.

    Article  CAS  Google Scholar 

  32. Mulugeta Y, Barrett JS, Nelson R, et al. Exposure matching for extrapolation of efficacy in pediatric drug development. J Clin Pharmacol. 2016;56:1326.

    Article  CAS  Google Scholar 

  33. Yu J, Chung S, Zadezensky I, et al. Utility of exposure-response analysis in regulatory decision on the selection of starting dose of pasireotide for cushing disease. J Clin Pharmacol. 2016;56:1035.

    Article  CAS  Google Scholar 

  34. Zhuang L, He Y, Xia H, et al. Gentamicin dosing strategy in patients with end-stage renal disease receiving haemodialysis: evaluation using a semi-mechanistic pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother. 2016;71:1012.

    Article  CAS  Google Scholar 

  35. Earp JC, Mehrotra N, Peters KE, et al. Esomeprazole FDA approval in children with GERD: exposure-matching and exposure-response. J Pediatr Gastroenterol Nutr. 2017;65:272.

    Article  CAS  Google Scholar 

  36. Li L, Wang Y, Uppoor RS, et al. Exposure-response analyses of blood pressure and heart rate changes for methylphenidate in healthy adults. J Pharmacokinet Pharmacodyn. 2017;44:245.

    Article  CAS  Google Scholar 

  37. Li H, Yu J, Liu C, et al. Time dependent pharmacokinetics of pembrolizumab in patients with solid tumor and its correlation with best overall response. J Pharmacokinet Pharmacodyn. 2017;44:403.

    Article  CAS  Google Scholar 

  38. Li L, Zhang Y, et al. Exposure-response modeling and power analysis of components of ACR response criteria in rheumatoid arthritis (part 1: binary model). J Clin Pharmacol. 2017;57:1097.

    Article  CAS  Google Scholar 

  39. Liu C, Yu J, Li H, et al. Association of time-varying clearance of nivolumab with disease dynamics and its implications on exposure-response analysis. Clin Pharmacol Ther. 2017;101:657.

    Article  CAS  Google Scholar 

  40. Paterniti MO, Bi Y, Rekić D, et al. Acute exacerbation and decline in forced vital capacity are associated with increased mortality in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:1395.

    Article  Google Scholar 

  41. Chaikin P, Rhodes GR, Bruno R, et al. Pharmacokinetics/pharmacodynamics in drug development: an industrial perspective. J Clin Pharmacol. 2000;40:1428–38.

    Article  CAS  Google Scholar 

  42. Reigner BG, Williams PE, Patel IH, et al. An evaluation of the integration of pharmacokinetic and pharmacodynamic principles in clinical drug development. Experience within Hoffmann La Roche. Clin Pharmacokinet. 1997;33:142–52.

    Article  CAS  Google Scholar 

  43. Gieschke R, Steimer JL. Pharmacometrics: modelling and simulation tools to improve decision making in clinical drug development. Eur J Drug Metab Pharmacokinet. 2000;25:49–58.

    Article  CAS  Google Scholar 

  44. Olson SC, Bockbrader H, Boyd RA, et al. Impact of population pharmacokinetic pharmacodynamic analyses on the drug development process: experience at Parke Davis. Clin Pharmacokinet. 2000;38:449–59.

    Article  CAS  Google Scholar 

  45. Blesch KS, Gieschke R, Tsukamoto Y, et al. Clinical pharmacokinetic/pharmacodynamic and physiologically based pharmacokinetic modeling in new drug development: the capecitabine experience. Invest New Drugs. 2003;21:195–223.

    Article  CAS  Google Scholar 

  46. Lockwood P, Ewy W, Hermann D, et al. Application of clinical trial simulation to compare proof of concept study designs for drugs with a slow onset of effect; an example in Alzheimer’s disease. Pharm Res. 2006;23:2050–9.

    Article  CAS  Google Scholar 

  47. Peck CC, Barr WH, Benet LZ, et al. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Clin Pharmacol Ther. 1992;51:465–73.

    Article  CAS  Google Scholar 

  48. Noble D, Levin J, Scott W. Biological simulations in drug discovery. Drug Discov Today. 1999;4:10–6.

    Article  CAS  Google Scholar 

  49. Lesko LJ, Rowland M, Peck CC, et al. Optimizing the science of drug development: opportunities for better candidate selection and accelerated evaluation in humans. Pharm Res. 2000;17:1335–44.

    Article  CAS  Google Scholar 

  50. Drusano GL, Louie A, Deziel M, et al. The crisis of resistance: identifying drug exposures to suppress amplification of resistant mutant subpopulations. Clin Infect Dis. 2006;42:525–32.

    Article  CAS  Google Scholar 

  51. Hutmacher MM, Mukherjee D, Kowalski KG, et al. Collapsing mechanistic models: an application to dose selection for proof of concept of a selective irreversible antagonist. J Pharmacokinet Pharmacodyn. 2005;32:501–20.

    Article  Google Scholar 

  52. Danhof M. Systems pharmacology—towards the modeling of network interactions. Eur J Pharm Sci. 2016;30(94):4–14.

    Article  Google Scholar 

  53. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development—part 2: introduction to pharmacokinetic modeling methods. CPT: Pharm Syst Pharmacol. 2013;2:1–16.

    Google Scholar 

  54. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development—part 3: introduction to pharmacodynamic modeling methods. CPT: Pharm Syst Pharmacol. 2014;3:1–18.

    Google Scholar 

  55. Ait-Oudhia S, Mager DE, Straubinger RM. Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics. 2014;6(1):137–74.

    Article  Google Scholar 

  56. Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacometrics Syst Pharmacol. 2013;2(8):e63.

    Article  Google Scholar 

  57. U.S. Food and Drug Administration. Application of physiologically-based pharmacokinetic modeling to support dosing recommendations—the US Food and Drug Administration experience. 2016. https://www.ema.europa.eu/documents/presentation/presentation-application-physiologicallybased-pharmacokinetic-modeling-support-dosing_en.pdf. Accessed 22 Sept 2021.

  58. Kimko H, Peck C. Clinical trial simulations: applications and trends. Berlin: Springer; 2011.

    Book  Google Scholar 

  59. Liu X, Ward RM. Pharmacometrics in pediatrics. Ther Innov Regul Sci. 2019;53(5):579–83.

    Article  Google Scholar 

  60. Bortz DM, Nelson PW. Model selection and mixed-effects modeling of HIV infection dynamics. Bull Math Biol. 2006;68:2005–25.

    Article  CAS  Google Scholar 

  61. Pillai G, Gieschke R, Goggin T, et al. A semimechanistic and mechanistic population PK-PD model for biomarker response to ibandronate, a new bisphosphonate for the treatment of osteoporosis. Br J Clin Pharmacol. 2004;58(6):618–31.

    Article  Google Scholar 

  62. Mostafavi S, Baranzini S, Oksernberg J, et al. Predictive modeling of therapy response in multiple sclerosis using gene expression data. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5519–22.

    Article  Google Scholar 

  63. Van der Helm-van Mil AH, le Cessie S, van Dongen H, et al. A prediction rule for disease outcome in patients with recentonset undifferentiated arthritis: how to guide individual treatment decisions. Arthritis Rheum. 2007;56:433–40.

    Article  Google Scholar 

  64. Barton P, Jobanputra P, Wilson J, et al. The use of modelling to evaluate new drugs for patients with a chronic condition: the case of antibodies against tumor necrosis factor in rheumatoid arthritis. Health Technol Assess. 2004;8:1–91.

    Article  Google Scholar 

  65. Winter W, DeJongh J, Post T, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying Type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn. 2006;33:313–43.

    Article  Google Scholar 

  66. Gaitonde PG, Chien JY, Schmidt S. Drug-systems-disease model to predict treatment-outcome in type 2 diabetes mellitus. Clin Pharmacol Ther. 2015;97:S40–1.

    Google Scholar 

  67. Hurtado FKG, Garhyan P, Chien JY, et al. Development of a mechanism-based drug-disease modeling platform for type 2 diabetes mellitus. Clin Pharmacol Ther. 2016;99:S37.

    Google Scholar 

  68. Srinvas N, Maffuid K, Kashuba ADM. Clinical pharmacokinetics and pharmacodynamics of drugs in the central nervous system. Clin Pharmacokinet. 2018;54:1059–74.

    Article  Google Scholar 

  69. Conrado DJ, Nicholas T, Tsai K, et al. Dopamine transporter neuroimaging as an enrichment biomarker in early Parkinson’s disease clinical trials: a disease progression modeling analysis. Clin Transl Sci. 2018;11:63–70.

    Article  Google Scholar 

  70. Romero K, Conrado D, Burton J, et al. Molecular neuroimaging of the dopamine transporter as a patient enrichment biomarker for clinical trials for early Parkinson’s disease. Clin Transl Sci. 2019;12:240–6.

    Article  Google Scholar 

  71. Stephenson D, Hill D, Cedarbaum MJ, et al. The qualification of an enrichment biomarker for clinical trials targeting early stages of Parkinson’s disease. J Park Dis. 2019;9:553–63.

    CAS  Google Scholar 

  72. Burger D, Agarwala S, Child M, et al.: Effect of rifampin on steadystate pharmacokinetics of atazanavir and ritonavir in healthy subjects. In: 12th Conference on Retroviruses and Opportunistic Infections, Boston, MA, 22–25 Feb 2005.

  73. Zamek-Gliszczynski MJ, Chu X, Polli JW, et al. Understanding the transport properties of metabolites: case studies and considerations for drug development. Drug Metab Dispos. 2014;42(4):650–64.

    Article  Google Scholar 

  74. Zanger Ulrich M, Matthias S. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41.

    Article  CAS  Google Scholar 

  75. Li M, Zhu L, Chen L, et al. Assessment of drug–drug interactions between voriconazole and glucocorticoids. J Chemother. 2018;30(5):296–303.

    Article  CAS  Google Scholar 

  76. Back D, Marzolini C. The challenge of HIV treatment in an era of polypharmacy. J Int AIDS Soc. 2020;23(2):e25449.

    Article  Google Scholar 

  77. Marzolini C, Rajoli R, Battegay M, et al. Physiologically based pharmacokinetic modeling to predict drug–drug interactions with efavirenz involving simultaneous inducing and inhibitory effects on cytochromes. Clin Pharmacokinet. 2017;56(4):409–20.

    Article  CAS  Google Scholar 

  78. Dong M, Fukuda T, Selim S, et al. Clinical trial simulations and harmacometrics analysis in pediatrics: application to inhaled loxapine in children and adolescents. Clin Pharmacokinet. 2017;56:1207–17.

    Article  CAS  Google Scholar 

  79. van Hasselt JG, van Eijkelenburg NK, Beijnen JH, et al. Design of a drug-drug interaction study of vincristine with azole antifungals in pediatric cancer patients using clinical trial simulation. Pediatr Blood Cancer. 2014;61:2223–9.

    Article  Google Scholar 

  80. Wharton GT, Murphy MD, Avant D, et al. Impact of pediatric exclusivity on drug labeling and demonstrations of efficacy. Pediatrics. 2014;134:e512–8.

    Article  Google Scholar 

  81. Ward RM, Drover DR, Hammer GB, et al. The pharmacokinetics of methadone and its metabolites in neonates, infants, and children. Pediatr Anaesth. 2014;24:591–601.

    Article  Google Scholar 

  82. Li M, Gehring R, Riviere JE, et al. Probabilistic physiologically based pharmacokinetic model for penicillin G in milk from dairy cows following intramammary or intramuscular administrations. Toxicol Sci. 2018;164(1):85–100.

    Article  CAS  Google Scholar 

  83. Buur J, Baynes R, Smith G, et al. Use of probabilistic modeling within a physiologically based pharmacokinetic model to predict sulfamethazine residue withdrawal times in edible tissues in swine. Antimicrob Agents Chemother. 2006;2006(50):2344–51.

    Article  Google Scholar 

  84. DeWoskin RS, Sweeney LM, Teeguarden JG, et al. Comparison of PBTK model and biomarker based estimates of the internal dosimetry of acrylamide. Food Chem Toxicol. 2013;58:506–21.

    Article  CAS  Google Scholar 

  85. Henri J, Carrez R, Meda B, et al. A physiologically based pharmacokinetic model for chickens exposed to feed supplemented with monensin during their lifetime. J Vet Pharmacol Ther. 2017;40:370–82.

    Article  CAS  Google Scholar 

  86. Lin Z, Li M, Gehring R, et al. Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans. J Pharm Sci. 2015;104:233–43.

    Article  CAS  Google Scholar 

  87. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995;1995(373):123–6.

    Article  Google Scholar 

  88. Perelson AS, Neumann AU, Markowitz M, et al. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science. 1996;271:1582–6.

    Article  CAS  Google Scholar 

  89. Nowak MA, Bonhoeffer S, Shaw GM, et al. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J Theor Biol. 1997;184:203–17.

    Article  CAS  Google Scholar 

  90. Murray JM, Kaufmann G, Kelleher AD, et al. A model of primary HIV-1 infection. Math Biosci. 1998;154:57–85.

    Article  CAS  Google Scholar 

  91. Kramer I. Modeling the dynamical impact of HIV on the immune system: viral clearance, infection, and AIDS. Math Comput Model. 1999;29:95–112.

    Article  Google Scholar 

  92. Perelson AS, Nelson PW. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999;41:3–44.

    Article  Google Scholar 

  93. Wodarz D, Lloyd AL, Jansen VAA, et al. Dynamics of macrophage and T cell infection by HIV. J Theor Biol. 1999;196:101–13.

    Article  CAS  Google Scholar 

  94. Stafford MA, Corey L, Cao Y, et al. Modeling plasma virus concentration during primary HIV infection. J Theor Biol. 2000;203:285–301.

    Article  CAS  Google Scholar 

  95. Callaway DS, Perelson AS. HIV-1 infection and low steady state viral loads. Bull Math Biol. 2002;64:29–64.

    Article  Google Scholar 

  96. Herz AVM, Bonhoeffer S, Anderson RM, et al. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc Natl Acad Sci USA. 1996;93:7247–51.

    Article  CAS  Google Scholar 

  97. Grossman Z, Feinberg M, Kuznetsov V, et al. HIV infection: how effective is drug combination treatment? Immunol Today. 1998;19:528–32.

    Article  CAS  Google Scholar 

  98. Mittler JE, Sulzer B, Neumann AU, et al. Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math Biosci. 1998;152:143–63.

    Article  CAS  Google Scholar 

  99. Nelson PW, Murray JD, Perelson AS. A model of HIV-1 pathogenesis that includes an intracellular delay. Math Biosci. 2000;163:201–15.

    Article  CAS  Google Scholar 

  100. Nelson PW, Perelson AS. Mathematical analysis of delay differential equation models of HIV-1 infection. Math Biosci. 2002;179:73–94.

    Article  Google Scholar 

  101. Lloyd AL. The dependence of viral parameter estimates on the asumed viral load life cycle: Limitations of studies of viral load data. Proc R Soc Lond Ser B. 2001;268:847–54.

    Article  CAS  Google Scholar 

  102. Liu Stephanie N, Desta Z, et al. Probenecid-Boosted Tenofovir: a physiologically-based pharmacokinetic model-informed strategy for on-demand HIV preexposure prophylaxis. CPT Pharmacometrics Syst Pharmacol. 2019. https://doi.org/10.1002/psp4.12481.

    Article  Google Scholar 

  103. Riggs MM, Cremers S. Pharmacometrics and systems pharmacology for metabolic bone diseases. Br J Clin Pharmacol. 2019;85(6):1136–46.

    Article  Google Scholar 

  104. Post TM, Schmidt S, Peletier LA, et al. Application of a mechanism-based disease systems model for osteoporosis to clinical data. J Pharmacokinet Pharmacodyn. 2013;40(2):143–56.

    Article  CAS  Google Scholar 

  105. Ross DS, Mehta K, Cabal A. Mathematical model of bone remodeling captures the antiresorptive and anabolic actions of various therapies. Bull Math Biol. 2017;79(1):117–42.

    Article  CAS  Google Scholar 

  106. Cremers SCLM, Pillai G, Papapoulos SE. Pharmacokinetics/pharmacodynamics of bisphosphonates: use for harmacometr of intermittent therapy for osteoporosis. Clin Pharmacokinet. 2005;44(6):551–70.

    Article  CAS  Google Scholar 

  107. Peterson MC, Riggs MM. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone. 2010;46(1):49–63.

    Article  CAS  Google Scholar 

  108. Pivonka P, Zimak J, Smith DW, et al. Model structure and control of bone remodeling: a theoretical study. Bone. 2008;43(2):249–63.

    Article  CAS  Google Scholar 

  109. Post TM, Freijer JI, DeJongh J, et al. Disease system analysis: basic disease progression models in degenerative disease. Pharm Res. 2005;22(7):1038–49.

    Article  CAS  Google Scholar 

  110. Riggs M M, Gillespie W R, Gastonguay M R, et al. Extension of a multiscale model of calcium homeostasis and bone remodeling to include the progressive effects of estrogen loss during menopause transition [Conference presentation]. In: National Institute of General Medical Sciences, Quantitative and System Pharmacology Workshop II, Bethesda, MD, 9 September 2010.

  111. Lien YTK, Madrasi K, Samant S, et al. Establishment of a disease-drug trial model for postmenopausal osteoporosis: a zoledronic acid case study. J Clin Pharmacol. 2020;60(2):86–102.

    Google Scholar 

  112. Kassahun K, McIntosh I, Koeplinger K, et al. Disposition and metabolism of the cathepsin K inhibitor odanacatib in humans. Drug Metab Dispos. 2014;42(5):818–27.

    Article  Google Scholar 

  113. Zajic S, Stone JA, Jaworowicz D. Semi-mechanistic PK/PD model of the effect of odanacatib, a cathepsin K inhibitor, on bone turnover to characterize lumbar spine and distal forearm bone mineral density in a phase IIb study of postmenopausal women. PAGE Abstr Annu Meet Popul Approach Gr Eur. 2011;20:2190.

    Google Scholar 

  114. Zajic S, Rossenu S, Hreniuk D, et al. The absolute bioavailability and effect of food on the pharmacokinetics of odanacatib: a stable-label i.v./oral study in healthy postmenopausal women. Drug Metab Dispos. 2016;44(9):1450–8.

    Article  CAS  Google Scholar 

  115. Ma B, Luo B, Euler DH, et al. Applicability of in vitro-in vivo translation of cathepsin K inhibition from animal species to human with the use of free-drug hypothesis. Naunyn Schmiedebergs Arch Pharmacol. 2017;390(4):435–41.

    Article  CAS  Google Scholar 

  116. Gaitonde P, Hurtado FK, Garhyan P, et al. Development and qualification of a drug-disease modeling platform to characterize clinically relevant endpoints in type 2 diabetes trials. Clin Pharmacol Ther. 2018;104(4):699–708.

    Article  CAS  Google Scholar 

  117. Mandema JW, Cox E, Alderman J. Therapeutic benefit of Eletriptan compared to Suma triptan for the acute relief of migraine pain results of a model based meta analysis that accounts for encapsulation. Cephalalgia. 2005;25:715–25.

    Article  CAS  Google Scholar 

  118. Samtani M. Simple pharmacometric tools for oral anti diabetic drug development: competitive landscape for oral non insulin therapies in type 2 diabetes. Biopharm Drug Dispos. 2010;31:162–77.

    CAS  Google Scholar 

  119. Normand SL. Meta analysis: formulating, evaluating, combining, and reporting. Stat Med. 1999;18:321–59.

    Article  CAS  Google Scholar 

  120. Berry DA, Berry SM, McKellar J, et al. Comparison of the dose response relation ships of 2 lipid lowering agents: a Bayesian meta analysis. Am Heart J. 2003;145:1036–45.

    Article  CAS  Google Scholar 

  121. Heard RN. The spectrum of multiple sclerosis. Curr Allergy Asthma Rep. 2007;7:280–4.

    Article  Google Scholar 

  122. Novakovic AM, Thorsted A, Schindler E, et al. Pharmacometric analysis of the relationship between absolute lymphocyte count and expanded disability status scale and relapse rate, efficacy end points, in multiple sclerosis trials. J Clin Pharmacol. 2018;58(10):1284–94.

    Article  CAS  Google Scholar 

  123. Hu X, Hang Y, Cui Y, et al. Population-based pharmacokinetic and exposure-efficacy analyses of peginterferon beta-1a in patients with relapsing multiple sclerosis. J Clin Pharmacol. 2017;57(8):1005–16.

    Article  CAS  Google Scholar 

  124. U.S. Food and Drug Administration. General clinical pharmacology considerations for pediatric studies for drugs and biological products—draft guidance for industry. 2014.

  125. European Medicines Agency (EMA). Concept paper on extrapolation of efficacy and safety in medicine development. EMA. 2013. Accessed from https://www.ema.europa.eu/en/documents/scientific-guideline/concept-paper-extrapolation-efficacy-safety-medicine-development_en.pdf

  126. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.

    Article  CAS  Google Scholar 

  127. Stockmann C, Barrett JS, Roberts JK, et al. Use of modeling and simulation in the design and conduct of pediatric clinical trials and the optimization of individualized dosing regimens. CPT Pharmacometrics Syst Pharmacol. 2015;4:630–40.

    Article  CAS  Google Scholar 

  128. Vinks AA, Emoto C, Fukuda T. Modeling and simulation in pediatric drug therapy: application of pharmacometrics to define the right dose for children. Clin Pharmacol Ther. 2015;98:298–308.

    Article  CAS  Google Scholar 

  129. Mehrotra N, Bhattaram A, Earp JC, et al. Role of quantitative clinical pharmacology in pediatric approval and labeling. Drug Metab Dispos. 2016;44(7):924–33.

    Article  CAS  Google Scholar 

  130. Ogungbenro K, Aarons L, CRESim. A physiologically based pharmacokinetic model for clobazam and stiripentol in adults and children. Pharm Res. 2015;32:144–57.

    Article  CAS  Google Scholar 

  131. Ogungbenro K, Aarons L, CRESim. Physiologically based pharmacokinetic modelling of methotrexate and 6-mercaptopurine in adults and children. Part 1: methotrexate. J Pharmacokinet Pharmacodyn. 2014;41:159–71.

    Article  CAS  Google Scholar 

  132. Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15:455–64.

    Article  CAS  Google Scholar 

  133. Jiang XL, Zhao P, Barrett JS, et al. Application of physiologically based pharmacokinetic modeling to predict acetaminophen metabolism and pharmacokinetics in children. CPT Pharmacometrics Syst Pharmacol. 2013;2:e80.

    Article  Google Scholar 

  134. Leong R, Vieira MLT, Zhao P, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91:926–31.

    Article  CAS  Google Scholar 

  135. Life Science Leader. 2021. https://www.lifescienceleader.com/doc/why-animal-health-is-the-next-big-growth-area-0001. Accessed 14 Oct 2021

  136. Li M, Gehring R, Riviere JE, Lin Z. Probabilistic physiologically based pharmacokinetic model for penicillin G in milk from dairy cows following intramammary or intramuscular administrations. Toxicol Sci. 2018;164(1):85–100.

    Article  CAS  Google Scholar 

  137. Cox SR, Liao S, Payne-Johnson M, et al. Population pharmacokinetics of mavacoxib in osteoarthritic dogs. J Vet Pharmacol Ther. 2011;34(1):1–11.

    Article  CAS  Google Scholar 

  138. European Medicines Agency (EMA). CVMP assessment report for CYTOPOINT (EMEA/V/C/003939/0000). 2017. Accessed from https://www.ema.europa.eu/en/documents/assessment-report/cytopoint-epar-public-assessment-report_en.pdf.

  139. Ridker PM, Tardif JC, Amarenco P, et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376(16):1517–26.

    Article  CAS  Google Scholar 

  140. Jones HM, Zhang Z, Jasper P, et al. A physiologically-based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. CPT Pharmacometrics Syst Pharmacol. 2019;8(10):738–47.

    Article  CAS  Google Scholar 

  141. Sahota T, Danhof M, Della PO. The impact of composite AUC estimates on the prediction of systemic exposure in toxicology experiments. J Pharmacokinet Pharmacodyn. 2016;42:251–61.

    Article  Google Scholar 

  142. Tan Y-M, Worley RR, Leonard JA, et al. Challenges associated with applying physiologically based pharmacokinetic modeling for public health decision-making. Toxicol Sci. 2018;162(2):341–8.

    Article  CAS  Google Scholar 

  143. Bonate PL. PK-PD Modeling and Simulation, 2nd Ed Allerheiligen, SRB. Clin Pharmacol Ther. 2014;96(4):413–5.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Pró-reitoria de Pesquisa Pós-graduação (PROPPI/UFOP) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

LCB: Conceptualization, Data curation, Writing—original draft, review and editing; LP Co-supervision, Writing—review and editing; CMC: Writing—review and editing, Supervision, Funding acquisition, Project administration, Resources.

Corresponding author

Correspondence to Lorena Cera Bandeira.

Ethics declarations

Conflict of interest

Authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandeira, L.C., Pinto, L. & Carneiro, C.M. Pharmacometrics: The Already-Present Future of Precision Pharmacology. Ther Innov Regul Sci 57, 57–69 (2023). https://doi.org/10.1007/s43441-022-00439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43441-022-00439-4

Keywords

Navigation