Skip to main content
Log in

Bridging the Worlds of Pharmacometrics and Machine Learning

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Precision medicine requires individualized modeling of disease and drug dynamics, with machine learning-based computational techniques gaining increasing popularity. The complexity of either field, however, makes current pharmacological problems opaque to machine learning practitioners, and state-of-the-art machine learning methods inaccessible to pharmacometricians. To help bridge the two worlds, we provide an introduction to current problems and techniques in pharmacometrics that ranges from pharmacokinetic and pharmacodynamic modeling to pharmacometric simulations, model-informed precision dosing, and systems pharmacology, and review some of the machine learning approaches to address them. We hope this would facilitate collaboration between experts, with complementary strengths of principled pharmacometric modeling and flexibility of machine learning leading to synergistic effects in pharmacological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rawson TM, Gowers SAN, Freeman DME, Wilson RC, Sharma S, Gilchrist M, et al. Microneedle biosensors for real-time, minimally invasive drug monitoring of phenoxymethylpenicillin: a first-in-human evaluation in healthy volunteers. Lancet Digital Health. 2019;1:e335–43.

    Article  PubMed  Google Scholar 

  2. Vanhove T, Annaert P, Kuypers DRJ. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review. Drug Metab Rev. 2016;48:88–112.

    Article  CAS  PubMed  Google Scholar 

  3. Wicha SG, Märtson A-G, Nielsen EI, Koch BCP, Friberg LE, Alffenaar J-W, et al. From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin Pharmacol Ther. 2021;109:928–41.

    Article  CAS  PubMed  Google Scholar 

  4. Chabot GG. Factors involved in clinical pharmacology variability in oncology (review). Anticancer Res. 1994;14:2269–72.

    CAS  PubMed  Google Scholar 

  5. Nahata MC. Variability in clinical pharmacology of drugs in children. J Clin Pharm Ther. 1992;17:365–8.

    Article  CAS  PubMed  Google Scholar 

  6. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352:2211–21.

    Article  CAS  PubMed  Google Scholar 

  7. Johnson M, Patel M, Phipps A, van der Schaar M, Boulton D, Gibbs M. The potential and pitfalls of artificial intelligence in clinical pharmacology. CPT Pharmacometrics Syst Pharmacol. 2023;12:279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bica I, Alaa AM, Lambert C, van der Schaar M. From real-world patient data to individualized treatment effects using machine learning: current and future methods to address underlying challenges. Clin Pharmacol Ther. 2021;109:87–100.

    Article  PubMed  Google Scholar 

  9. Terranova N, Venkatakrishnan K, Benincosa LJ. Application of machine learning in translational medicine: current status and future opportunities. AAPS J. 2021;23:74.

    Article  PubMed  Google Scholar 

  10. Qian Z, Zame WR, Fleuren LM, Elbers PWG, Schaar M van der. Integrating expert ODEs into neural ODEs: pharmacology and disease progression. CoRR. 2021;abs/2106.02875. Available from: https://arxiv.org/abs/2106.02875. (Accessed 26 Sep 2023).

  11. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2:e38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sibieude E, Khandelwal A, Girard P, Hesthaven JS, Terranova N. Population pharmacokinetic model selection assisted by machine learning. J Pharmacokinet Pharmacodyn. 2022;49:257–70.

    Article  PubMed  Google Scholar 

  13. Ismail M, Sale M, Yu Y, Pillai N, Liu S, Pflug B, et al. Development of a genetic algorithm and NONMEM workbench for automating and improving population pharmacokinetic/pharmacodynamic model selection. J Pharmacokinet Pharmacodyn. 2022;49:243–56.

    Article  CAS  PubMed  Google Scholar 

  14. Jaber MM, Yaman B, Sarafoglou K, Brundage RC. Application of deep neural networks as a prescreening tool to assign individualized absorption models in pharmacokinetic analysis. Pharmaceutics. 2021;13:797.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Otalvaro JD, Yamada WM, Hernandez AM, Zuluaga AF, Chen R, Neely MN. A proof of concept reinforcement learning based tool for non parametric population pharmacokinetics workflow optimization. J Pharmacokinet Pharmacodyn. 2022. https://doi.org/10.1007/s10928-022-09829-5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guidi M, Csajka C, Buclin T. Parametric approaches in population pharmacokinetics. J Clin Pharmacol. 2022;62:125–41.

    Article  CAS  PubMed  Google Scholar 

  17. Goutelle S, Woillard J-B, Neely M, Yamada W, Bourguignon L. Nonparametric methods in population pharmacokinetics. J Clin Pharmacol. 2020;62(2):142–57.

    Article  PubMed  Google Scholar 

  18. Goutelle S, Woillard J-B, Buclin T, Bourguignon L, Yamada W, Csajka C, et al. Parametric and nonparametric methods in population pharmacokinetics: experts’ discussion on use, strengths, and limitations. J Clin Pharmacol. 2022;62:158–70.

    Article  CAS  PubMed  Google Scholar 

  19. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacqz-Aigrain E, Leroux S, Thomson AH, Allegaert K, Capparelli EV, Biran V, et al. Population pharmacokinetic meta-analysis of individual data to design the first randomized efficacy trial of vancomycin in neonates and young infants. J Antimicrob Chemother. 2019;74:2128–38.

    Article  CAS  PubMed  Google Scholar 

  21. Sibieude E, Khandelwal A, Hesthaven JS, Girard P, Terranova N. Fast screening of covariates in population models empowered by machine learning. J Pharmacokinet Pharmacodyn. 2021;48:597–609.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Karatza E, Papachristos A, Sivolapenko GB, Gonzalez D. Machine learning-guided covariate selection for time-to-event models developed from a small sample of real-world patients receiving bevacizumab treatment. CPT Pharmacometrics Syst Pharmacol. 2022;11:1328–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asiimwe IG, Blockman M, Cohen K, Cupido C, Hutchinson C, Jacobson B, et al. Stable warfarin dose prediction in sub-Saharan African patients: a machine-learning approach and external validation of a clinical dose-initiation algorithm. CPT Pharmacometrics Syst Pharmacol. 2022;11:20–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ponthier L, Ensuque P, Destere A, Marquet P, Labriffe M, Jacqz-Aigrain E, et al. Optimization of vancomycin initial dose in term and preterm neonates by machine learning. Pharm Res. 2022;39:2497–506.

    Article  CAS  PubMed  Google Scholar 

  25. Franck B, Woillard J-B, Théorêt Y, Bittencourt H, Demers E, Briand A, et al. Population pharmacokinetics of ganciclovir and valganciclovir in paediatric solid organ and stem cell transplant recipients. Br J Clin Pharmacol. 2021;87:3105–14.

    Article  CAS  PubMed  Google Scholar 

  26. Uster DW, Stocker SL, Carland JE, Brett J, Marriott DJE, Day RO, et al. A model averaging/selection approach improves the predictive performance of model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109:175–83.

    Article  CAS  PubMed  Google Scholar 

  27. Leroux S, Jacqz-Aigrain E, Biran V, Lopez E, Madeleneau D, Wallon C, et al. Clinical utility and safety of a model-based patient-tailored dose of vancomycin in neonates. Antimicrob Agents Chemother. 2016;60:2039–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bououda M, Uster DW, Sidorov E, Labriffe M, Marquet P, Wicha SG, et al. A machine learning approach to predict interdose vancomycin exposure. Pharm Res. 2022;39:721–31.

    Article  CAS  PubMed  Google Scholar 

  29. Woillard J-B, Labriffe M, Prémaud A, Marquet P. Estimation of drug exposure by machine learning based on simulations from published pharmacokinetic models: the example of tacrolimus. Pharmacol Res. 2021;167: 105578.

    Article  CAS  PubMed  Google Scholar 

  30. Labriffe M, Woillard J-B, Debord J, Marquet P. Machine learning algorithms to estimate everolimus exposure trained on simulated and patient pharmacokinetic profiles. CPT Pharmacometrics Syst Pharmacol. 2022;11:1018–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang B-H, Guan Z, Allegaert K, Wu Y-E, Manolis E, Leroux S, et al. Drug clearance in neonates: a combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction. Clin Pharmacokinet. 2021;60:1435–48.

    Article  CAS  PubMed  Google Scholar 

  32. Zwart TC, Moes DJAR, van der Boog PJM, van Erp NP, de Fijter JW, Guchelaar H-J, et al. Model-informed precision dosing of everolimus: external validation in adult renal transplant recipients. Clin Pharmacokinet. 2021;60:191–203.

    Article  CAS  PubMed  Google Scholar 

  33. Goutelle S, Alloux C, Bourguignon L, Van Guilder M, Neely M, Maire P. To estimate or to forecast? Lessons from a comparative analysis of four Bayesian fitting methods based on nonparametric models. Ther Drug Monit. 2021;43:461–71.

    Article  PubMed  Google Scholar 

  34. Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacometrics Syst Pharmacol. 2021;10:1150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Destere A, Marquet P, Gandonnière CS, Åsberg A, Loustaud-Ratti V, Carrier P, et al. A hybrid model associating population pharmacokinetics with machine learning: a case study with iohexol clearance estimation. Clin Pharmacokinet. 2022;61:1157–65.

    Article  CAS  PubMed  Google Scholar 

  36. Woillard J-B, Labriffe M, Debord J, Marquet P. Tacrolimus exposure prediction using machine learning. Clin Pharmacol Ther. 2021;110:361–9.

    Article  CAS  PubMed  Google Scholar 

  37. Woillard J-B, Labriffe M, Debord J, Marquet P. Mycophenolic acid exposure prediction using machine learning. Clin Pharmacol Ther. 2021;110:370–9.

    Article  CAS  PubMed  Google Scholar 

  38. Woillard J-B, Salmon Gandonnière C, Destere A, Ehrmann S, Merdji H, Mathonnet A, et al. A machine learning approach to estimate the glomerular filtration rate in intensive care unit patients based on plasma iohexol concentrations and covariates. Clin Pharmacokinet. 2021;60:223–33.

    Article  CAS  PubMed  Google Scholar 

  39. Keutzer L, You H, Farnoud A, Nyberg J, Wicha SG, Maher-Edwards G, et al. Machine learning and pharmacometrics for prediction of pharmacokinetic data: differences, similarities and challenges illustrated with rifampicin. Pharmaceutics. 2022;14:1530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desmée S, Mentré F, Veyrat-Follet C, Sébastien B, Guedj J. Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer. BMC Med Res Methodol. 2017;17:105.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tardivon C, Desmée S, Kerioui M, Bruno R, Wu B, Mentré F, et al. Association between tumor size kinetics and survival in patients with urothelial carcinoma treated with atezolizumab: implication for patient follow-up. Clin Pharmacol Ther. 2019;106:810–20.

    Article  CAS  PubMed  Google Scholar 

  42. Rizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time-to-event data. Biometrics. 2011;67:819–29.

    Article  PubMed  Google Scholar 

  43. Arisido MW, Antolini L, Bernasconi DP, Valsecchi MG, Rebora P. Joint model robustness compared with the time-varying covariate Cox model to evaluate the association between a longitudinal marker and a time-to-event endpoint. BMC Med Res Methodol. 2019;19:222.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lee C, Yoon J, van der Schaar M. Dynamic-DeepHit: a deep learning approach for dynamic survival analysis with competing risks based on longitudinal data. IEEE Trans Biomed Eng. 2020;67:122–33.

    Article  PubMed  Google Scholar 

  45. Lee H-S, Zhang Y, Zame W, Shen C, Lee J-W, Schaar M van der. Robust recursive partitioning for heterogeneous treatment effects with uncertainty quantification. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada 2020;2282–92.

  46. Lee C, Light A, Saveliev ES, van der Schaar M, Gnanapragasam VJ. Developing machine learning algorithms for dynamic estimation of progression during active surveillance for prostate cancer. NPJ Digit Med. 2022;5:110.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bulusu KC, Guha R, Mason DJ, Lewis RPI, Muratov E, Kalantar Motamedi Y, et al. Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discovery Today. 2016;21:225–38.

    Article  CAS  PubMed  Google Scholar 

  48. Torng W, Altman RB. Graph convolutional neural networks for predicting drug-target interactions. J Chem Inf Model. 2019;59:4131–49.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Rabeah MH, Lakizadeh A. Prediction of drug-drug interaction events using graph neural networks based feature extraction. Sci Rep. 2022;12:15590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng Y-H, Zhang S-W. Prediction of drug-drug interaction using an attention-based graph neural network on drug molecular graphs. Molecules. 2022;27:3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee H-S, Shen C, Zame WR, Lee J-W, Schaar M van der. SDF-Bayes: cautious optimism in safe dose-finding clinical trials with drug combinations and heterogeneous patient groups. CoRR. 2021;abs/2101.10998. Available from: https://arxiv.org/abs/2101.10998. (Accessed 26 Sep 2023).

  52. Crabbe J, Qian Z, Imrie F, van der Schaar M. Explaining latent representations with a corpus of examples. In: Ranzato M, Beygelzimer A, Dauphin Y, Liang PS, Vaughan JW, editors. Advances in neural information processing systems. Curran Associates, Inc.; 2021: p. 12154–66. Available from: https://proceedings.neurips.cc/paper/2021/file/65658fde58ab3c2b6e5132a39fae7cb9-Paper.pdf. (Accessed 26 Sep 2023).

  53. Menden MP, Wang D, Mason MJ, Szalai B, Bulusu KC, Guan Y, et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun. 2019;10:2674.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: ways to make an impact, and why we are not there yet. Drug Discov Today. 2021;26:511–24.

    Article  CAS  PubMed  Google Scholar 

  55. Barbieri C, Molina M, Ponce P, Tothova M, Cattinelli I, Ion Titapiccolo J, et al. An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int. 2016;90:422–9.

    Article  PubMed  Google Scholar 

  56. Gu Y, Tinn R, Cheng H, Lucas M, Usuyama N, Liu X, et al. Domain-specific language model pretraining for biomedical natural language processing. CoRR. 2020;abs/2007.15779. Available from: https://arxiv.org/abs/2007.15779. (Accessed 26 Sep 2023).

  57. Wiatrak M, Iso-Sipila J. Simple hierarchical multi-task neural end-to-end entity linking for biomedical text. Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis. Association for Computational Linguistics; 2020: p. 12–17. Available from: https://aclanthology.org/2020.louhi-1.2. (Accessed 26 Sep 2023).

  58. Neil D, Briody J, Lacoste A, Sim A, Creed P, Saffari A. Interpretable graph convolutional neural networks for inference on noisy knowledge Graphs. CoRR. 2018;abs/1812.00279. Available from: http://arxiv.org/abs/1812.00279. (Accessed 26 Sep 2023).

  59. Smith DP, Oechsle O, Rawling MJ, Savory E, Lacoste AMB, Richardson PJ. Expert-augmented computational drug repurposing identified baricitinib as a treatment for COVID-19. Front Pharmacol. 2021;12: 709856.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bonner S, Barrett IP, Ye C, Swiers R, Engkvist O, Bender A, et al. A review of biomedical datasets relating to drug discovery: a knowledge graph perspective. CoRR [Internet]. 2021;abs/2102.10062. Available from: https://arxiv.org/abs/2102.10062. (Accessed 26 Sep 2023).

  61. Paliwal S, de Giorgio A, Neil D, Michel J-B, Lacoste AM. Preclinical validation of therapeutic targets predicted by tensor factorization on heterogeneous graphs. Sci Rep. 2020;10:18250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nguyen THT, Mouksassi M-S, Holford N, Al-Huniti N, Freedman I, Hooker AC, et al. Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometrics Syst Pharmacol. 2017;6:87–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. El-Haffaf I, Guilhaumou R, Velly L, Marsot A. Using a validated population pharmacokinetic model for dosing recommendations of continuous infusion piperacillin for critically ill adult patients. Clin Pharmacokinet. 2022;61:895–906.

    Article  CAS  PubMed  Google Scholar 

  64. Chan A, Peck R, Gibbs M, van der Schaar M. Synthetic model combination: a new machine-learning method for pharmacometric model ensembling. CPT Pharmacometrics Syst Pharmacol. 2023;12(7):953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hughes JH, Tong DMH, Lucas SS, Faldasz JD, Goswami S, Keizer RJ. Continuous learning in model-informed precision dosing: a case study in pediatric dosing of vancomycin. Clin Pharmacol Ther. 2021;109:233–42.

    Article  CAS  PubMed  Google Scholar 

  66. Commissioner O of the Project Optimus. US FDA. 2022. Available from: https://www.fda.gov/about-fda/oncology-center-excellence/project-optimus. (Accessed 26 Oct 2022).

  67. Bedon L, Cecchin E, Fabbiani E, Dal Bo M, Buonadonna A, Polano M, et al. Machine learning application in a phase I clinical trial allows for the identification of clinical-biomolecular markers significantly associated with toxicity. Clin Pharmacol Ther. 2022;111:686–96.

    Article  CAS  PubMed  Google Scholar 

  68. Curth A, Hüyük A, van der Schaar M. Adaptively identifying patient populations with treatment benefit in clinical trials. Proceedings of the 40 th International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR, 2023;202. https://arxiv.org/abs/2208.05844

  69. Shen C, Wang Z, Villar SS, Schaar M van der. Learning for dose allocation in adaptive clinical trials with safety constraints. CoRR. 2020;abs/2006.05026. Available from: https://arxiv.org/abs/2006.05026. (Accessed 27 Sep 2023).

  70. Zame WR, Bica I, Shen C, Curth A, Lee H-S, Bailey S, et al. Machine learning for clinical trials in the era of COVID-19. Stat Biopharm Res. 2020;12:506–17.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee HS, Shen C, Jordon J, van der Schaar M. Contextual constrained learning for dose-finding clinical trials. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. PMLR. 2020;2645–54. Available from: https://proceedings.mlr.press/v108/lee20a.html

  72. Gu J-Q, Guo Y-P, Jiao Z, Ding J-J, Li G-F. How to handle delayed or missed doses: a population pharmacokinetic perspective. Eur J Drug Metab Pharmacokinet. 2020;45:163–72.

    Article  CAS  PubMed  Google Scholar 

  73. Saint-Marcoux F, Woillard J-B, Monchaud C, Friedl J, Bocquentin F, Essig M, et al. How to handle missed or delayed doses of tacrolimus in renal transplant recipients? A pharmacokinetic investigation. Pharmacol Res. 2015;100:281–7.

    Article  CAS  PubMed  Google Scholar 

  74. Sheiner LB, Beal S, Rosenberg B, Marathe VV. Forecasting individual pharmacokinetics. Clin Pharmacol Ther. 1979;26:294–305.

    Article  CAS  PubMed  Google Scholar 

  75. Francke MI, Andrews LM, Le HL, van de Wetering J, Clahsen-van Groningen MC, van Gelder T, et al. Avoiding tacrolimus underexposure and overexposure with a dosing algorithm for renal transplant recipients: a single arm prospective intervention trial. Clin Pharmacol Ther. 2021;110:169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bica I, Alaa AM, Jordon J, Schaar M van der. Estimating counterfactual treatment outcomes over time through adversarially balanced representations. CoRR. 2020;abs/2002.04083. Available from: https://arxiv.org/abs/2002.04083. (Accessed 27 Sep 2023).

  77. Bica I, Jordon J, van der Schaar M. Estimating the effects of continuous-valued interventions using generative adversarial networks. CoRR. 2020;abs/2002.12326. Available from: https://arxiv.org/abs/2002.12326. (Accessed 27 Sep 2023).

  78. Schmidt M, Lipson H. Distilling free-form natural laws from experimental data. Science. 2009;324:81–5.

    Article  CAS  PubMed  Google Scholar 

  79. Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA. 2016;113:3932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qian Z, Kacprzyk K, van der Schaar M. D-CODE: discovering closed-form ODEs from observed trajectories. International Conference on Learning Representations; 2021.

  81. Chen RT, Rubanova Y, Bettencourt J, Duvenaud D. Neural ordinary differential equations. arXiv preprint. 2018;180607366.

  82. Yildiz C, Heinonen M, Lähdesmäki H. ODE2VAE: deep generative second order ODEs with Bayesian neural networks. Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 2019.

  83. De Brouwer E, Simm J, Arany A, Moreau Y. Gru-ode-bayes: continuous modeling of sporadically-observed time series. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019); 2019.

  84. Rubanova Y, Chen RT, Duvenaud D. Latent ordinary differential equations for irregularly-sampled time series. 33th Conference on Neural Information Processing Systems (NeurIPS 2019); 2019.

  85. Kidger P, Morrill J, Foster J, Lyons T. Neural controlled differential equations for irregular time series. 34th Conference on Neural Information Processing Systems (NeurIPS 2020); 2020.

  86. Hochlehnert A, Terenin A, Saemundsson S, Deisenroth M. Learning contact dynamics using physically structured neural networks. In: Banerjee A, Fukumizu K, editors. Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. PMLR; 2021: p. 2152–60. Available from: https://proceedings.mlr.press/v130/hochlehnert21a.html. (Accessed 27 Sep 2023).

  87. Saemundsson S, Terenin A, Hofmann K, Deisenroth M. Variational integrator networks for physically structured embeddings. In: Chiappa S, Calandra R, editors. Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics. PMLR; 2020: p. 3078–87. Available from: https://proceedings.mlr.press/v108/saemundsson20a.html. (Accessed 27 Sep 2023).

  88. Janssen A, Leebeek FWG, Cnossen MH, Mathôt RAA, OPTI-CLOT Study Group and SYMPHONY Consortium. Deep compartment models: a deep learning approach for the reliable prediction of time-series data in pharmacokinetic modeling. CPT Pharmacometrics Syst Pharmacol. 2022;11:934–45.

    Article  CAS  PubMed Central  Google Scholar 

  89. Jelliffe R. Goal-oriented, model-based drug regimens: setting individualized goals for each patient. Ther Drug Monit. 2000;22:325–9.

    Article  CAS  PubMed  Google Scholar 

  90. Woillard J-B, Saint-Marcoux F, Debord J, Åsberg A. Pharmacokinetic models to assist the prescriber in choosing the best tacrolimus dose. Pharmacol Res. 2018;130:316–21.

    Article  CAS  PubMed  Google Scholar 

  91. Ribba B, Dudal S, Lavé T, Peck RW. Model-informed artificial intelligence: reinforcement learning for precision dosing. Clin Pharmacol Ther. 2020;107:853–7.

    Article  PubMed  Google Scholar 

  92. Maier C, Hartung N, Kloft C, Huisinga W, de Wiljes J. Reinforcement learning and Bayesian data assimilation for model-informed precision dosing in oncology. CPT Pharmacometrics Syst Pharmacol. 2021;10:241–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nemati S, Ghassemi MM, Clifford GD. Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:2978–81.

    PubMed  Google Scholar 

  94. Zadeh SA, Street WN, Thomas BW. Optimizing warfarin dosing using deep reinforcement learning. CoRR. 2022;abs/2202.03486. Available from: https://arxiv.org/abs/2202.03486. (Accessed 27 Sep 2023).

  95. Yauney G, Shah P. Reinforcement learning with action-derived rewards for chemotherapy and clinical trial dosing regimen selection. In: Doshi-Velez F, Fackler J, Jung K, Kale DC, Ranganath R, Wallace BC, et al., editors. Proceedings of the Machine Learning for Healthcare Conference; 17–18 Aug 2018; Palo Alto (CA): p. 161–226. Available from: http://proceedings.mlr.press/v85/yauney18a.html. (Accessed 27 Sep 2023).

  96. Padmanabhan R, Meskin N, Haddad WM. Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment. Math Biosci. 2017;293:11–20.

    Article  CAS  PubMed  Google Scholar 

  97. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–90.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang T, Androulakis IP, Bonate P, Cheng L, Helikar T, Parikh J, et al. Two heads are better than one: current landscape of integrating QSP and machine learning. J Pharmacokinet Pharmacodyn. 2022;49:5–18.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Soret P, Le Dantec C, Desvaux E, Foulquier N, Chassagnol B, Hubert S, et al. A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome. Nat Commun. 2021;12:3523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dai W, Rao R, Sher A, Tania N, Musante CJ, Allen R. A prototype QSP model of the immune response to SARS-CoV-2 for community development. CPT Pharmacometrics Syst Pharmacol. 2021;10:18–29.

    Article  CAS  PubMed  Google Scholar 

  101. MELLODDY. Available from: https://www.melloddy.eu. (Accessed 9 Nov 2022).

  102. Ogier du Terrail J, Leopold A, Joly C, Béguier C, Andreux M, Maussion C, et al. Federated learning for predicting histological response to neoadjuvant chemotherapy in triple-negative breast cancer. Nat Med. 2023;29:135–46.

  103. For chemists, the AI revolution has yet to happen. Nature. 2023;617:438.

  104. Chan AJ, Bica I, Hüyük A, Jarrett D, Schaar M van der. The Medkit-Learn(ing) environment: medical decision modelling through simulation. CoRR. 2021;abs/2106.04240. Available from: https://arxiv.org/abs/2106.04240. (Accessed 26 Sep 2023).

  105. Qian Z, Cebere B C, and van der Schaar M. Synthcity: facilitating innovative use cases of synthetic data in different data modalities. 2023. Available from: https://arxiv.org/abs/2301.07573

  106. Stability AI. Stable Diffusion launch announcement. Available from: https://stability.ai/blog/stable-diffusion-announcement. (Accessed 7 Jun 2023).

  107. Introducing ChatGPT. Available from: https://openai.com/blog/chatgpt. (Accessed 7 Jun 2023).

  108. Health C for D and R. Artificial intelligence and machine learning in software as a medical device. US FDA; 2022. Available from: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device. (Accessed 7 Jun 2023).

  109. Chollet F, others. Keras. 2015. Available from: https://keras.io. (Accessed 26 Sep 2023).

  110. Buitinck L, Louppe G, Blondel M, Pedregosa F, Mueller A, Grisel O, et al. API design for machine learning software: experiences from the scikit-learn project. ECML PKDD Workshop: languages for data ining and machine learning; 2013; p. 108–22.

  111. Kuhn M, Wickham H. Tidymodels: a collection of packages for modeling and machine learning using tidyverse principles. 2020. Available from: https://www.tidymodels.or. (Accessed 26 Sep 2023).

  112. Kapoor S, Narayanan A. Leakage and the reproducibility crisis in ML-based science. arXiv. 2022. Available from: https://arxiv.org/abs/2207.07048. (Accessed 26 Sep 2023).

  113. Lee C, van der Schaar M. Temporal phenotyping using deep predictive clustering of disease progression. arXiv; 2020. Available from: https://arxiv.org/abs/2006.08600. (Accessed 26 Sep 2023).

  114. Gerlowski LE, Jain RK. Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci. 1983;72:1103–27.

    Article  CAS  PubMed  Google Scholar 

  115. Azer K, Kaddi CD, Barrett JS, Bai JPF, McQuade ST, Merrill NJ, et al. History and future perspectives on the discipline of quantitative systems pharmacology modeling and its applications. Front Physiol. 2021. https://doi.org/10.3389/fphys.2021.637999. (Accessed 9 Dec 2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Agoram BM, Demin O. Integration not isolation: arguing the case for quantitative and systems pharmacology in drug discovery and development. Drug Discov Today. 2011;16:1031–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Zhaozhi Qian, Alexander Terenin, Maciej Wiatrak, and Haoting Zhang for their helpful reviews and suggestions. KS thanks AstraZeneca for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Woillard.

Ethics declarations

Funding

No funding was received to assist with the preparation of this article.

Conflicts of Interest/Competing Interests

Jean-Baptiste Woillard, Pierre Marquet, and Mihaela van der Schaar have no conflicts of interest that are directly relevant to the content of this article. Kamilė Stankevičiūtė receives research funding from AstraZeneca. Richard W. Peck is an employee and stockholder of F. Hoffmann-La Roche.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Authors’ Contributions

JBW, KS, and RWP conceptualized the ideas, JWB and KS conducted the research and wrote the manuscript, KS made the figures, RWP and PM reviewed and edited the manuscript, and MvdS acquired the funding and supervised the project.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stankevičiūtė, K., Woillard, JB., Peck, R.W. et al. Bridging the Worlds of Pharmacometrics and Machine Learning. Clin Pharmacokinet 62, 1551–1565 (2023). https://doi.org/10.1007/s40262-023-01310-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01310-x

Navigation