Skip to main content

Advertisement

Log in

Metabolic engineering strategies for microbial utilization of C1 feedstocks

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The use of abundant and cheap one carbon (C1) feedstocks to produce value-added chemicals is an important approach for achieving carbon neutrality and tackling environmental problems. The conversion of C1 feedstocks to high-value chemicals is dependent on efficient C1 assimilation pathways and microbial chassis adapted for efficient incorporation. Here, we opted to summarize the natural and synthetic C1 assimilation pathways and their key factors for metabolizing C1 feedstock. Accordingly, we discussed the metabolic engineering strategies for enabling the microbial utilization of C1 feedstocks for the bioproduction of value-added chemicals. In addition, we highlighted future perspectives of C1-based biomanufacturing for achieving a low-carbon footprint for the biosynthesis of chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Friedlingstein P, Jones MW, O’Sullivan M, et al. Global carbon budget 2021. Earth Syst Sci Data. 2022;14:1917–2005.

    Article  Google Scholar 

  2. Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res. 2018;57:2165–77.

    Article  CAS  Google Scholar 

  3. Gesicka A, Oleskowicz-Popiel P, Lezyk M. Recent trends in methane to bioproduct conversion by methanotrophs. Biotechnol Adv. 2021;53: 107861.

    Article  CAS  Google Scholar 

  4. Pavan M, Reinmets K, Garg S, et al. Advances in systems metabolic engineering of autotrophic carbon oxide-fixing biocatalysts towards a circular economy. Metab Eng. 2022;71:117–41.

    Article  CAS  Google Scholar 

  5. Cotton CA, Claassens NJ, Benito-Vaquerizo S, et al. Renewable methanol and formate as microbial feedstocks. Curr Opin Biotechnol. 2020;62:168–80.

    Article  CAS  Google Scholar 

  6. Gassler T, Sauer M, Gasser B, et al. The industrial yeast Pichia pastoris is converted from a heterotroph into an autotroph capable of growth on CO2. Nat Biotechnol. 2020;38:210–6.

    Article  CAS  Google Scholar 

  7. Chen FYH, Jung H-W, Tsuei C-Y, et al. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell. 2020;182:933.

  8. Gleizer S, Ben-Nissan R, Bar-On YM, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell. 2019;179(1255–1263): e1212.

    Google Scholar 

  9. Liew FE, Nogle R, Abdalla T, et al. Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale. Nat Biotechnol. 2022;40:335–44.

    Article  CAS  Google Scholar 

  10. Bar-Even A, Noor E, Milo R. A survey of carbon fixation pathways through a quantitative lens. J Exp Bot. 2012;63:2325–42.

    Article  CAS  Google Scholar 

  11. Sanchez-Andrea I, Guedes IA, Hornung B, et al. The reductive glycine pathway allows autotrophic growth of Desulfovibrio desulfuricans. Nat Commun. 2020;11.

  12. Song Y, Lee JS, Shin J, et al. Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of Clostridium drakei. Proc Natl Acad Sci U S A. 2020;117:7516–23.

    Article  CAS  Google Scholar 

  13. Bang J, Hwang CH, Ahn JH, et al. Escherichia coli is engineered to grow on CO2 and formic acid. Nat Microbiol. 2020;5:1459.

  14. Kim S, Lindner SN, Aslan S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol. 2020;16:538.

  15. Ahn JH, Seo H, Park W, et al. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nat Commun. 2020;11:1970.

    Article  CAS  Google Scholar 

  16. Zhang W, Zhang T, Song M, et al. Metabolic engineering of Escherichia coli for high yield production of succinic acid driven by methanol. ACS Synth Biol. 2018;7:2803–11.

    Article  CAS  Google Scholar 

  17. Cai. T, Sun. H, Qiao. J, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science. 2021.

  18. Lu XY, Liu YW, Yang YQ, et al. Constructing a synthetic pathway for acetylcoenzyme A from one-carbon through enzyme design. Nat Commun. 2019;10.

  19. Schwander T, Schada von Borzyskowski L, Burgener S, et al. A synthetic pathway for the fixation of carbon dioxide in vitro. Science. 2016;354:900–4.

  20. Satanowski A, Dronsella B, Noor E, et al. Awakening a latent carbon fixation cycle in Escherichia coli. Nat Commun. 2020;11.

  21. Luo S, Lin PP, Nieh L-Y, et al. A cell-free self-replenishing CO2-fixing system. Nat Catal. 2022;5:154–62.

    Article  CAS  Google Scholar 

  22. Xiao L, Liu G, Gong F, et al. A minimized synthetic carbon fixation cycle. ACS Catal. 2021;12:799–808.

    Article  Google Scholar 

  23. Gonzalez-Resendiz L, Sanchez-Garcia L, Hernandez-Martinez I, et al. Photoautotrophic poly(3-hydroxybutyrate) production by a wild-type Synechococcus elongatus isolated from an extreme environment. Bioresour Technol. 2021;337: 125508.

    Article  CAS  Google Scholar 

  24. Cazzaniga S, Dall’Osto L, Szaub J, et al. Domestication of the green alga Chlorella sorokiniana: reduction of antenna size improves light-use efficiency in a photobioreactor. Biotechnol Biofuels. 2014;7:157.

    Article  Google Scholar 

  25. Unrean P, Tee KL, Wong TS. Metabolic pathway analysis for in silico design of efficient autotrophic production of advanced biofuels. Bioresour Bioprocess. 2019;6.

  26. Karim AS, Dudley QM, Juminaga A, et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat Chem Biol. 2020;16:912–9.

    Article  CAS  Google Scholar 

  27. Mo XH, Zhang H, Wang TM, et al. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis. Appl Microbiol Biotechnol. 2020;104:4515–32.

    Article  CAS  Google Scholar 

  28. Liu Y, Bai C, Xu Q, et al. Improved methanol-derived lovastatin production through enhancement of the biosynthetic pathway and intracellular lovastatin efflux in methylotrophic yeast. Bioresour Bioprocess. 2018;5.

  29. Jin X, Zhang W, Wang Y, et al. Biosynthesis of non-animal chondroitin sulfate from methanol using genetically engineered Pichia pastoris. Green Chem. 2021;23:4365–74.

    Article  CAS  Google Scholar 

  30. Chen C-T, Chen FYH, Bogorad IW, et al. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production. Metab Eng. 2018;49:257–66.

    Article  CAS  Google Scholar 

  31. Meyer F, Keller P, Hartl J, et al. Methanol-essential growth of Escherichia coli. Nat Commun. 2018;9:1508.

    Article  Google Scholar 

  32. Bang J, Lee SY. Assimilation of formic acid and CO2 by engineered Escherichia coli equipped with reconstructed one-carbon assimilation pathways. Proc Natl Acad Sci U S A. 2018;115:E9271–9.

    Article  CAS  Google Scholar 

  33. Bang J, Ahn JH, Lee JA, et al. Synthetic formatotrophs for one-carbon biorefinery. Adv Sci. 2021;8.

  34. Yishai O, Bouzon M, Doering V, et al. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth Biol. 2018;7:2023–8.

    Article  CAS  Google Scholar 

  35. Yasokawa D, Murata S, Iwahashi Y, et al. Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Appl Biochem Biotechnol. 2010;160:1685–98.

    Article  CAS  Google Scholar 

  36. Espinosa MI, Gonzalez-Garcia RA, Valgepea K, et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun. 2020;11:5564.

    Article  CAS  Google Scholar 

  37. Dai Z, Gu H, Zhang S, et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresour Technol. 2017;245:1407–12.

    Article  CAS  Google Scholar 

  38. Gonzalez de la Cruz J, Machens F, Messerschmidt K, et al. Core catalysis of the reductive glycine pathway demonstrated in yeast. ACS Synth Biol. 2019;8:911–7.

  39. Lessmeier L, Pfeifenschneider J, Carnicer M, et al. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol. 2015;99:10163–76.

    Article  CAS  Google Scholar 

  40. Wang Y, Fan L, Tuyishime P, et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum. Commun Biol. 2020;3:217.

    Article  CAS  Google Scholar 

  41. Tuyishime P, Wang Y, Fan L, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng. 2018;49:220–31.

    Article  CAS  Google Scholar 

  42. Sundaram S, Diehl C, Cortina NS, et al. A modular in vitro platform for the production of terpenes and polyketides from CO2. Angew Chem Int Ed Engl. 2021;60:16420–5.

    Article  CAS  Google Scholar 

  43. Yu H, Liao JC. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat Commun. 2018;9.

  44. Hai He RH, Dodenhöft M, Marlière P, et al. An optimized methanol assimilation pathway relying on promiscuous formaldehyde-condensing aldolases in E. coli. Metab Eng. 2020;60:1–13.

    Article  Google Scholar 

  45. Wang X, Wang Y, Liu J, et al. Biological conversion of methanol by evolved Escherichia coli carrying a linear methanol assimilation pathway. Bioresour Bioprocess. 2017;4.

  46. Siegel JB, Smith AL, Poust S, et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A. 2015;112:3704–9.

    Article  CAS  Google Scholar 

  47. Hu G, Li Z, Ma D, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat Catal. 2021;4:395–406.

    Article  CAS  Google Scholar 

  48. Hu G, Guo L, Gao C, et al. Synergistic metabolism of glucose and formate increases the yield of short-chain organic acids in Escherichia coli. ACS Synth Biol. 2022;11:135–43.

    Article  CAS  Google Scholar 

  49. Liu X, Feng X, Ding Y, et al. Characterization and directed evolution of propionyl-CoA carboxylase and its application in succinate biosynthetic pathway with two CO2 fixation reactions. Metab Eng. 2020;62:42–50.

    Article  CAS  Google Scholar 

  50. Meng H, Wang C, Yuan Q, et al. An aldolase-based new pathway for bioconversion of formaldehyde and ethanol into 1,3-propanediol in Escherichia coli. ACS Synth Biol. 2021;10:799–809.

    Article  CAS  Google Scholar 

  51. Scheffen M, Marchal DG, Beneyton T, et al. A new-to-nature carboxylation module to improve natural and synthetic CO2 fixation. Nat Catal. 2021;4.

  52. Antonovsky N, Gleizer S, Noor E, et al. Sugar synthesis from CO2 in Escherichia coli. Cell. 2016;166:115–25.

    Article  CAS  Google Scholar 

  53. Zhang L, Chen Z, Yang C, et al. Global supply risk assessment of the metals used in clean energy technologies. J Clean Prod. 2022;331.

  54. Krieg T, Sydow A, Faust S, et al. CO2 to terpenes: autotrophic and electroautotrophic alpha-humulene production with Cupriavidus necator. Angew Chem Int Ed Engl. 2018;57:1879–82.

    Article  CAS  Google Scholar 

  55. Rodrigues RM, Guan X, Iñiguez JA, et al. Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction. Nat Catal. 2019;2:407–14.

    Article  CAS  Google Scholar 

  56. Deutzmann JS, Spormann AM. Enhanced microbial electrosynthesis by using defined co-cultures. ISME J. 2017;11:704–14.

    Article  CAS  Google Scholar 

  57. Hu G, Zhou J, Chen X, et al. Engineering synergetic CO2-fixing pathways for malate production. Metab Eng. 2018;47:496–504.

    Article  CAS  Google Scholar 

  58. Toya Y, Hirono-Hara Y, Hirayama H, et al. Optogenetic reprogramming of carbon metabolism using light-powering microbial proton pump systems. Metab Eng. 2022;72:227–36.

    Article  CAS  Google Scholar 

  59. Wang B, Jiang Z, Yu JC, et al. Enhanced CO2 reduction and valuable C2+ chemical production by a CdS-photosynthetic hybrid system. Nanoscale. 2019;11:9296–301.

    Article  CAS  Google Scholar 

  60. Caspi R, Billington R, Ferrer L, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2016;44:D471-480.

    Article  CAS  Google Scholar 

  61. Hadadi N, Hafner J, Shajkofci A, et al. ATLAS of biochemistry: a repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth Biol. 2016;5:1155–66.

    Article  CAS  Google Scholar 

  62. Ebrahim A, Lerman JA, Palsson BO, et al. COBRApy: COnstraints-based reconstruction and analysis for python. BMC Syst Biol. 2013;7:74.

    Article  Google Scholar 

  63. Noor E, Flamholz A, Bar-Even A, et al. The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization. PLoS Comput Biol. 2016;12: e1005167.

    Article  Google Scholar 

  64. Lubitz T, Schulz M, Klipp E, et al. Parameter balancing in kinetic models of cell metabolism. J Phys Chem B. 2010;114:16298–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Provincial Outstanding Youth Foundation of Jiangsu Province (BK20211529), the National Science Fund for Excellent Young Scholars (22122806) and the Fundamental Research Funds for the Central Universities (JUSRP22031).

Author information

Authors and Affiliations

Authors

Contributions

JZ and XLC collected the information and wrote the manuscript, XLC, LG, CG, WS, JW and LML revised the manuscript.

Corresponding author

Correspondence to Xiulai Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

All authors agree with their participation in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Guo, L., Gao, C. et al. Metabolic engineering strategies for microbial utilization of C1 feedstocks. Syst Microbiol and Biomanuf 3, 122–136 (2023). https://doi.org/10.1007/s43393-022-00135-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00135-2

Keywords

Navigation