Skip to main content

Advertisement

Log in

Medical optimization of osteoporosis for adult spinal deformity surgery: a state-of-the-art evidence-based review of current pharmacotherapy

  • Review Article
  • Published:
Spine Deformity Aims and scope Submit manuscript

A Correction to this article was published on 19 December 2022

This article has been updated

Abstract

Purpose

Osteoporosis is a common, but challenging phenomenon to overcome in adult spinal deformity (ASD) surgery. Several pharmacological agents are at the surgeon’s disposal to optimize the osteoporotic patient prior to undergoing extensive reconstruction. Familiarity with these medications will allow the surgeon to make informed decisions on selecting the most appropriate adjuncts for each individual patient.

Methods

A comprehensive literature review was conducted in PubMed from September 2021 to April 2022. Studies were selected that contained combinations of various terms including osteoporosis, specific medications, spine surgery, fusion, cage subsidence, screw loosening, pull-out, junctional kyphosis/failure.

Results

Bisphosphonates, denosumab, selective estrogen receptor modulators, teriparatide, abaloparatide and romosozumab are all pharmacological agents currently available for adjunctive use. While these medications have been shown to have beneficial effects on improving bone mineral density in the osteoporotic patient, varying evidence is available on their specific effects in the context of extensive spine surgery. There is still a lack of human studies with use of the newer agents.

Conclusion

Bisphosphonates are first-line agents due to their low cost and robust evidence behind their utility. However, in the absence of contraindications, optimizing bone quality with anabolic medications should be strongly considered in preparation for spinal deformity surgeries due to their beneficial and favorable effects on fusion and hardware compared to the anti-resorptive medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data reviewed in this manuscript was obtained through publicly-accessible PubMed database.

Change history

References

  1. McCarthy I, O’Brien M, Ames C, Robinson C, Errico T, Polly DW Jr et al (2014) Incremental cost-effectiveness of adult spinal deformity surgery: observed quality-adjusted life years with surgery compared with predicted quality-adjusted life years without surgery. Neurosurg Focus 36(5):E3

    Article  PubMed  Google Scholar 

  2. Looker AC, Sarafrazi Isfahani N, Fan B, Shepherd JA (2017) Trends in osteoporosis and low bone mass in older US adults, 2005–2006 through 2013–2014. Osteoporos Int 28(6):1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. The National Osteoporosis Foundation (2014) 54 million Americans affected by osteoporosis and low bone mass Washington, DC. https://www.bonehealthandosteoporosis.org/news/54-million-americans-affected-by-osteoporosis-and-low-bone-mass/. Accessed 1 Oct 2021

  4. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report WHO study group. Osteoporos Int 4(6):368–381

    Article  CAS  PubMed  Google Scholar 

  5. Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS 3rd, Cook SD (1994) Effects of bone mineral density on pedicle screw fixation. Spine (Phila Pa 1976) 19(21):2415–2420

    Article  CAS  PubMed  Google Scholar 

  6. Sardar ZM, Coury JR, Cerpa M, DeWald CJ, Ames CP, Shuhart C et al (2022) Best practice guidelines for assessment and management of osteoporosis in adult patients undergoing elective spinal reconstruction. Spine (Phila Pa 1976) 47(2):128–135

    Article  PubMed  Google Scholar 

  7. Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR (2009) Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J 9(7):537–544

    Article  PubMed  Google Scholar 

  8. Díaz-Romero R, Henríquez MS, Melián KA, Balhen-Martin C (2021) Practice patterns of spine surgeons regarding osteoporosis: an international survey. Int J Spine Surg 15(2):376–385

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lehman RA Jr, Kang DG, Wagner SC (2015) Management of osteoporosis in spine surgery. J Am Acad Orthop Surg 23(4):253–263

    Article  PubMed  Google Scholar 

  10. Anam AK, Insogna K (2021) Update on osteoporosis screening and management. Med Clin North Am 105(6):1117–1134

    Article  PubMed  Google Scholar 

  11. Curry SJ, Krist AH, Owens DK, Barry MJ, Caughey AB, Davidson KW et al (2018) Screening for osteoporosis to prevent fractures: us preventive services task force recommendation statement. JAMA 319(24):2521–2531

    Article  PubMed  Google Scholar 

  12. Yoon BH, Kang HW, Kim SM, Koh YD (2022) Prevalence and risk factors of T-score spine-hip discordance in patients with osteoporotic vertebral compression fracture. J Bone Metab 29(1):43–49

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zaidi Q, Danisa OA, Cheng W (2019) Measurement techniques and utility of hounsfield unit values for assessment of bone quality prior to spinal instrumentation: a review of current literature. Spine (Phila Pa 1976) 44(4):E239–E244

    Article  PubMed  Google Scholar 

  14. Zou D, Li W, Xu F, Du G (2019) Use of Hounsfield units of S1 body to diagnose osteoporosis in patients with lumbar degenerative diseases. Neurosurg Focus 46(5):E6

    Article  PubMed  Google Scholar 

  15. Choi MK, Kim SM, Lim JK (2016) Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir (Wien) 158(7):1421–1427

    Article  PubMed  Google Scholar 

  16. Schreiber JJ, Anderson PA, Hsu WK (2014) Use of computed tomography for assessing bone mineral density. Neurosurg Focus 37(1):E4

    Article  PubMed  Google Scholar 

  17. Zou D, Li W, Deng C, Du G, Xu N (2019) The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J 28(8):1758–1766

    Article  PubMed  Google Scholar 

  18. Li G, Thabane L, Papaioannou A, Ioannidis G, Levine MA, Adachi JD (2017) An overview of osteoporosis and frailty in the elderly. BMC Musculoskelet Disord 18(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu LK, Lee WJ, Chen LY, Hwang AC, Lin MH, Peng LN et al (2015) Association between frailty, osteoporosis, falls and hip fractures among community-dwelling people aged 50 years and older in Taiwan: results from I-Lan longitudinal aging study. PLoS ONE 10(9):e0136968

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li G, Papaioannou A, Thabane L, Cheng J, Adachi JD (2016) Frailty change and major osteoporotic fracture in the elderly: data from the global longitudinal study of osteoporosis in women 3-year hamilton cohort. J Bone Miner Res 31(4):718–724

    Article  PubMed  Google Scholar 

  21. Tom SE, Adachi JD, Anderson FA Jr, Boonen S, Chapurlat RD, Compston JE et al (2013) Frailty and fracture, disability, and falls: a multiple country study from the global longitudinal study of osteoporosis in women. J Am Geriatr Soc 61(3):327–334

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tembo MC, Holloway-Kew KL, Mohebbi M, Sui SX, Hosking SM, Brennan-Olsen SL et al (2020) The association between a fracture risk tool and frailty: Geelong Osteoporosis Study. BMC Geriatr 20(1):196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karaguzel G, Holick MF (2010) Diagnosis and treatment of osteopenia. Rev Endocr Metab Disord 11(4):237–251

    Article  CAS  PubMed  Google Scholar 

  24. Reid IR, Horne AM, Mihov B, Stewart A, Garratt E, Wong S et al (2018) Fracture prevention with zoledronate in older women with osteopenia. N Engl J Med 379(25):2407–2416

    Article  CAS  PubMed  Google Scholar 

  25. Varacallo M, Seaman TJ, Jandu JS, Pizzutillo P. (2022) Osteopenia. In: StatPearls. StatPearls Publishing LLC., Treasure Island

  26. Eriksen EF (2012) Treatment of osteopenia. Rev Endocr Metab Disord 13(3):209–223

    Article  PubMed  Google Scholar 

  27. Iqbal SM, Qamar I, Zhi C, Nida A, Aslam HM (2019) Role of bisphosphonate therapy in patients with osteopenia: a systemic review. Cureus 11(2):e4146

    PubMed  PubMed Central  Google Scholar 

  28. Unnanuntana A, Gladnick BP, Donnelly E, Lane JM (2010) The assessment of fracture risk. J Bone Joint Surg Am 92(3):743–753

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O (2020) Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network. Eur Radiol 30(6):3549–3557

    Article  CAS  PubMed  Google Scholar 

  30. Krishnaraj A, Barrett S, Bregman-Amitai O, Cohen-Sfady M, Bar A, Chettrit D et al (2019) Simulating dual-energy X-ray absorptiometry in CT using deep-learning segmentation cascade. J Am Coll Radiol 16(10):1473–1479

    Article  PubMed  Google Scholar 

  31. Fang Y, Li W, Chen X, Chen K, Kang H, Yu P et al (2021) Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks. Eur Radiol 31(4):1831–1842

    Article  PubMed  Google Scholar 

  32. Muehlematter UJ, Mannil M, Becker AS, Vokinger KN, Finkenstaedt T, Osterhoff G et al (2019) Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. Eur Radiol 29(5):2207–2217

    Article  PubMed  Google Scholar 

  33. Almog YA, Rai A, Zhang P, Moulaison A, Powell R, Mishra A et al (2020) Deep learning with electronic health records for short-term fracture risk identification: crystal bone algorithm development and validation. J Med Internet Res 22(10):e22550

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lin YT, Chu CY, Hung KS, Lu CH, Bednarczyk EM, Chen HY (2022) Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis. Comput Methods Programs Biomed 225:107028

    Article  PubMed  Google Scholar 

  35. Hassanzadeh H, Puvanesarajah V, Dalkin AC (2016) Medical Management of osteoporosis for elective spine surgery. Clin Spine Surg 29(4):134–140

    Article  PubMed  Google Scholar 

  36. National Center for Biotechnology Information (U.S.), National Library of Medicine (U.S.). PubChem compound summary for CID 17684448, alendronate (1-). National Center for Biotechnology Information: National Library of Medicine, Bethesda. https://pubchem.ncbi.nlm.nih.gov/compound/Alendronate_1#section=Structures. Accessed 7 Apr 2022

  37. Djulbegovic B, Wheatley K, Ross J, Clark O, Bos G, Goldschmidt H et al (2002) Bisphosphonates in multiple myeloma. Cochrane Database Syst Rev 3:Cd003188

    Google Scholar 

  38. Ozdemir Y, Torun N, Guler OC, Yildirim BA, Besen AA, Yetisken AG et al (2019) Local control and vertebral compression fractures following stereotactic body radiotherapy for spine metastases. J Bone Oncol 15:100218

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aström E, Söderhäll S (1998) Beneficial effect of bisphosphonate during five years of treatment of severe osteogenesis imperfecta. Acta Paediatr 87(1):64–68

    Article  PubMed  Google Scholar 

  40. Falk MJ, Heeger S, Lynch KA, DeCaro KR, Bohach D, Gibson KS et al (2003) Intravenous bisphosphonate therapy in children with osteogenesis imperfecta. Pediatrics 111(3):573–578

    Article  PubMed  Google Scholar 

  41. Gezici AR, Ergün R, Gürel K, Yilmaz F, Okay O, Bozdoğan O (2009) The effect of risedronate on posterior lateral spinal fusion in a rat model. J Korean Neurosurg Soc 46(1):45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lehman RA Jr, Kuklo TR, Freedman BA, Cowart JR, Mense MG, Riew KD (2004) The effect of alendronate sodium on spinal fusion: a rabbit model. Spine J 4(1):36–43

    Article  PubMed  Google Scholar 

  43. Huang RC, Khan SN, Sandhu HS, Metzl JA, Cammisa FP Jr, Zheng F et al (2005) Alendronate inhibits spine fusion in a rat model. Spine (Phila Pa 1976) 30(22):2516–2522

    Article  PubMed  Google Scholar 

  44. Takahata M, Ito M, Abe Y, Abumi K, Minami A (2008) The effect of anti-resorptive therapies on bone graft healing in an ovariectomized rat spinal arthrodesis model. Bone 43(6):1057–1066

    Article  CAS  PubMed  Google Scholar 

  45. Xue QY, Ji Q, Li HS, Zou XN, Egund N, Lind M et al (2009) Alendronate treatment does not inhibit bone formation within biphasic calcium phosphate ceramics in posterolateral spinal fusion: an experimental study in porcine model. Chin Med J (Engl) 122(22):2770–2774

    PubMed  Google Scholar 

  46. Xue Q, Li H, Zou X, Bünger M, Egund N, Lind M et al (2005) The influence of alendronate treatment and bone graft volume on posterior lateral spine fusion in a porcine model. Spine (Phila Pa 1976) 30(10):1116–1121

    Article  PubMed  Google Scholar 

  47. Mei J, Song X, Guan X, Wu D, Wang J, Liu Q (2021) Postoperative bisphosphonate do not significantly alter the fusion rate after lumbar spinal fusion: a meta-analysis. J Orthop Surg Res 16(1):284

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A (2011) Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine 14(4):500–507

    Article  PubMed  Google Scholar 

  49. Kim SM, Rhee W, Ha S, Lim JH, Jang IT (2014) Influence of alendronate and endplate degeneration to single level posterior lumbar spinal interbody fusion. Korean J Spine 11(4):221–226

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li C, Wang HR, Li XL, Zhou XG, Dong J (2012) The relation between zoledronic acid infusion and interbody fusion in patients undergoing transforaminal lumbar interbody fusion surgery. Acta Neurochir (Wien) 154(4):731–738

    Article  PubMed  Google Scholar 

  51. Tu CW, Huang KF, Hsu HT, Li HY, Yang SS, Chen YC (2014) Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res 192(1):112–116

    Article  CAS  PubMed  Google Scholar 

  52. Chen F, Dai Z, Kang Y, Lv G, Keller ET, Jiang Y (2016) Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int 27(4):1469–1476

    Article  CAS  PubMed  Google Scholar 

  53. Ding Q, Chen J, Fan J, Li Q, Yin G, Yu L (2017) Effect of zoledronic acid on lumbar spinal fusion in osteoporotic patients. Eur Spine J 26(11):2969–2977

    Article  PubMed  Google Scholar 

  54. Dimar J, Bisson EF, Dhall S, Harrop JS, Hoh DJ, Mohamed B et al (2021) Congress of neurological surgeons systematic review and evidence-based guidelines for perioperative spine: preoperative osteoporosis assessment. Neurosurgery 89(Suppl 1):S19-s25

    Article  PubMed  Google Scholar 

  55. Samtani RG, Bernatz JT, Harrison R, Roy S, Gupta S, O’Brien JR (2019) The effect of alendronate on subsidence after lateral transpsoas interbody fusion: a preliminary report. Int J Spine Surg 13(3):289–295

    Article  PubMed  PubMed Central  Google Scholar 

  56. Buerba RA, Sharma A, Ziino C, Arzeno A, Ajiboye RM (2018) Bisphosphonate and teriparatide use in thoracolumbar spinal fusion: a systematic review and meta-analysis of comparative studies. Spine (Phila Pa 1976) 43(17):E1014–E1023

    Article  PubMed  Google Scholar 

  57. Fretes N, Vellios E, Sharma A, Ajiboye RM (2020) Radiographic and functional outcomes of bisphosphonate use in lumbar fusion: a systematic review and meta-analysis of comparative studies. Eur Spine J 29(2):272–281

    Article  PubMed  Google Scholar 

  58. Miller PD (2009) Denosumab: anti-RANKL antibody. Curr Osteoporos Rep 7(1):18–22

    Article  PubMed  Google Scholar 

  59. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC et al (2011) Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab 96(4):972–980

    Article  CAS  PubMed  Google Scholar 

  60. Langdahl BL, Teglbjærg CS, Ho PR, Chapurlat R, Czerwinski E, Kendler DL et al (2015) A 24-month study evaluating the efficacy and safety of denosumab for the treatment of men with low bone mineral density: results from the ADAMO trial. J Clin Endocrinol Metab 100(4):1335–1342

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura T, Matsumoto T, Sugimoto T, Hosoi T, Miki T, Gorai I et al (2014) Clinical Trials Express: fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: denosumab fracture intervention randomized placebo controlled trial (DIRECT). J Clin Endocrinol Metab 99(7):2599–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Iseri K, Iyoda M, Watanabe M, Matsumoto K, Sanada D, Inoue T et al (2018) The effects of denosumab and alendronate on glucocorticoid-induced osteoporosis in patients with glomerular disease: a randomized, controlled trial. PLoS ONE 13(3):e0193846

    Article  PubMed  PubMed Central  Google Scholar 

  63. Saag KG, Pannacciulli N, Geusens P, Adachi JD, Messina OD, Morales-Torres J et al (2019) Denosumab versus risedronate in glucocorticoid-induced osteoporosis: final results of a twenty-four-month randomized, double-blind, double-dummy trial. Arthritis Rheumatol 71(7):1174–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Watts NB, Roux C, Modlin JF, Brown JP, Daniels A, Jackson S et al (2012) Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos Int 23(1):327–337

    Article  CAS  PubMed  Google Scholar 

  65. Nitta K, Yajima A, Tsuchiya K (2017) Management of osteoporosis in chronic kidney disease. Intern Med 56(24):3271–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boquete-Castro A, Gómez-Moreno G, Calvo-Guirado JL, Aguilar-Salvatierra A, Delgado-Ruiz RA (2016) Denosumab and osteonecrosis of the jaw. A systematic analysis of events reported in clinical trials. Clin Oral Implants Res 27(3):367–375

    Article  PubMed  Google Scholar 

  67. Eguia A, Bagán-Debón L, Cardona F (2020) Review and update on drugs related to the development of osteonecrosis of the jaw. Med Oral Patol Oral Cir Bucal 25(1):e71–e83

    Article  CAS  PubMed  Google Scholar 

  68. Kendler DL, Cosman F, Stad RK, Ferrari S (2022) Denosumab in the treatment of osteoporosis: 10 years later: a narrative review. Adv Ther 39(1):58–74

    Article  PubMed  Google Scholar 

  69. Cummings SR, Ferrari S, Eastell R, Gilchrist N, Jensen JB, McClung M et al (2018) Vertebral fractures after discontinuation of denosumab: a post hoc analysis of the randomized placebo-controlled FREEDOM trial and its extension. J Bone Miner Res 33(2):190–198

    Article  CAS  PubMed  Google Scholar 

  70. Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O (2017) Clinical features of 24 patients with rebound-associated vertebral fractures after denosumab discontinuation: systematic review and additional cases. J Bone Miner Res 32(6):1291–1296

    Article  CAS  PubMed  Google Scholar 

  71. Anastasilakis AD, Makras P, Yavropoulou MP, Tabacco G, Naciu AM, Palermo A (2021) Denosumab discontinuation and the rebound phenomenon: a narrative review. J Clin Med 10(1):152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Polyzos SA, Makras P, Tournis S, Anastasilakis AD (2019) Off-label uses of denosumab in metabolic bone diseases. Bone 129:115048

    Article  CAS  PubMed  Google Scholar 

  73. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765

    Article  CAS  PubMed  Google Scholar 

  74. Adami S, Libanati C, Boonen S, Cummings SR, Ho PR, Wang A et al (2012) Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg Am 94(23):2113–2119

    Article  PubMed  Google Scholar 

  75. Wu J, Zhang Q, Yan G, Jin X (2018) Denosumab compared to bisphosphonates to treat postmenopausal osteoporosis: a meta-analysis. J Orthop Surg Res 13(1):194

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ide M, Yamada K, Kaneko K, Sekiya T, Kanai K, Higashi T et al (2018) Combined teriparatide and denosumab therapy accelerates spinal fusion following posterior lumbar interbody fusion. Orthop Traumatol Surg Res 104(7):1043–1048

    Article  PubMed  Google Scholar 

  77. Tani S, Ishikawa K, Kudo Y, Tsuchiya K, Matsuoka A, Maruyama H et al (2021) The effect of denosumab on pedicle screw fixation: a prospective 2-year longitudinal study using finite element analysis. J Orthop Surg Res 16(1):219

    Article  PubMed  PubMed Central  Google Scholar 

  78. Andersson MK, Lundberg P, Ohlin A, Perry MJ, Lie A, Stark A et al (2007) Effects on osteoclast and osteoblast activities in cultured mouse calvarial bones by synovial fluids from patients with a loose joint prosthesis and from osteoarthritis patients. Arthritis Res Ther 9(1):R18

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sköldenberg O, Rysinska A, Eisler T, Salemyr M, Bodén H, Muren O (2016) Denosumab for treating periprosthetic osteolysis; study protocol for a randomized, double-blind, placebo-controlled trial. BMC Musculoskelet Disord 17:174

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sun Q, Tian FM, Liu F, Fang JK, Hu YP, Lian QQ et al (2021) Denosumab alleviates intervertebral disc degeneration adjacent to lumbar fusion by inhibiting endplate osteochondral remodeling and vertebral osteoporosis in ovariectomized rats. Arthritis Res Ther 23(1):152

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ji MX, Yu Q (2015) Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med 1(1):9–13

    PubMed  PubMed Central  Google Scholar 

  82. Li X, Ominsky MS, Stolina M, Warmington KS, Geng Z, Niu QT et al (2009) Increased RANK ligand in bone marrow of orchiectomized rats and prevention of their bone loss by the RANK ligand inhibitor osteoprotegerin. Bone 45(4):669–676

    Article  CAS  PubMed  Google Scholar 

  83. Proell V, Xu H, Schüler C, Weber K, Hofbauer LC, Erben RG (2009) Orchiectomy upregulates free soluble RANKL in bone marrow of aged rats. Bone 45(4):677–681

    Article  CAS  PubMed  Google Scholar 

  84. Streicher C, Heyny A, Andrukhova O, Haigl B, Slavic S, Schüler C et al (2017) Estrogen regulates bone turnover by targeting RANKL expression in bone lining cells. Sci Rep 7(1):6460

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA 288(3):321–333

    Article  CAS  PubMed  Google Scholar 

  86. Barrett-Connor E, Cauley JA, Kulkarni PM, Sashegyi A, Cox DA, Geiger MJ (2004) Risk-benefit profile for raloxifene: 4-year data from the multiple outcomes of raloxifene evaluation (MORE) randomized trial. J Bone Miner Res 19(8):1270–1275

    Article  CAS  PubMed  Google Scholar 

  87. Rey JR, Cervino EV, Rentero ML, Crespo EC, Alvaro AO, Casillas M (2009) Raloxifene: mechanism of action, effects on bone tissue, and applicability in clinical traumatology practice. Open Orthop J 3:14–21

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cummings SR, Eckert S, Krueger KA, Grady D, Powles TJ, Cauley JA et al (1999) The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation Jama 281(23):2189–2197

    CAS  PubMed  Google Scholar 

  89. National Center for Biotechnology Information (U.S.), National Library of Medicine (U.S.). PubChem compound summary for CID 5035, raloxifene. National Center for Biotechnology Information: National Library of Medicine, Bethesda. https://pubchem.ncbi.nlm.nih.gov/compound/5035#section=Structures. Accessed 7 Apr 2022

  90. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial Multiple outcomes of raloxifene evaluation (MORE) investigators. JAMA 282(7):637–645

    Article  CAS  PubMed  Google Scholar 

  91. Delmas PD, Ensrud KE, Adachi JD, Harper KD, Sarkar S, Gennari C et al (2002) Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis: four-year results from a randomized clinical trial. J Clin Endocrinol Metab 87(8):3609–3617

    Article  CAS  PubMed  Google Scholar 

  92. Park SB, Kim CH, Hong M, Yang HJ, Chung CK (2016) Effect of a selective estrogen receptor modulator on bone formation in osteoporotic spine fusion using an ovariectomized rat model. Spine J 16(1):72–81

    Article  PubMed  Google Scholar 

  93. Sun Q, Nan XY, Tian FM, Liu F, Ping SH, Zhou Z et al (2021) Raloxifene retards the progression of adjacent segmental intervertebral disc degeneration by inhibiting apoptosis of nucleus pulposus in ovariectomized rats. J Orthop Surg Res 16(1):368

    Article  PubMed  PubMed Central  Google Scholar 

  94. National Center for Biotechnology Information (U.S.), National Library of Medicine (U.S.) (2022) PubChem compound summary for CID 16133850, forteo. National Center for Biotechnology Information: National Library of Medicine, Bethesda https://pubchem.ncbi.nlm.nih.gov/compound/16133850#section=Structures.

  95. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40(6):1434–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Canalis E (2018) MANAGEMENT OF ENDOCRINE DISEASE: novel anabolic treatments for osteoporosis. Eur J Endocrinol 178(2):R33-r44

    Article  CAS  PubMed  Google Scholar 

  97. Hattersley G, Dean T, Corbin BA, Bahar H, Gardella TJ (2016) Binding selectivity of abaloparatide for pth-type-1-receptor conformations and effects on downstream signaling. Endocrinology 157(1):141–149

    Article  CAS  PubMed  Google Scholar 

  98. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    Article  CAS  PubMed  Google Scholar 

  99. Sugimoto T, Nakamura T, Nakamura Y, Isogai Y, Shiraki M (2014) Profile of changes in bone turnover markers during once-weekly teriparatide administration for 24 weeks in postmenopausal women with osteoporosis. Osteoporos Int 25(3):1173–1180

    Article  CAS  PubMed  Google Scholar 

  100. Miyauchi A, Matsumoto T, Sugimoto T, Tsujimoto M, Warner MR, Nakamura T (2010) Effects of teriparatide on bone mineral density and bone turnover markers in Japanese subjects with osteoporosis at high risk of fracture in a 24-month clinical study: 12-month, randomized, placebo-controlled, double-blind and 12-month open-label phases. Bone 47(3):493–502

    Article  CAS  PubMed  Google Scholar 

  101. Kurland ES, Cosman F, McMahon DJ, Rosen CJ, Lindsay R, Bilezikian JP (2000) Parathyroid hormone as a therapy for idiopathic osteoporosis in men: effects on bone mineral density and bone markers. J Clin Endocrinol Metab 85(9):3069–3076

    CAS  PubMed  Google Scholar 

  102. Saag KG, Zanchetta JR, Devogelaer JP, Adler RA, Eastell R, See K et al (2009) Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum 60(11):3346–3355

    Article  CAS  PubMed  Google Scholar 

  103. Devogelaer JP, Adler RA, Recknor C, See K, Warner MR, Wong M et al (2010) Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J Rheumatol 37(1):141–148

    Article  CAS  PubMed  Google Scholar 

  104. Black DM, Rosen CJ (2016) Clinical practice. Postmenopausal Osteoporosis N Engl J Med 374(3):254–262

    Article  CAS  PubMed  Google Scholar 

  105. Kumagai Y, Ose A, Tanaka K, Sugimoto T (2020) Safety profiles, pharmacokinetics, and changes in bone turnover markers after twice-weekly subcutaneous administration of teriparatide in healthy japanese postmenopausal women: a single-blind randomized study. Clin Pharmacol Drug Dev 9(1):87–96

    Article  CAS  PubMed  Google Scholar 

  106. Satterwhite J, Heathman M, Miller PD, Marín F, Glass EV, Dobnig H (2010) Pharmacokinetics of teriparatide (rhPTH[1-34]) and calcium pharmacodynamics in postmenopausal women with osteoporosis. Calcif Tissue Int 87(6):485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL, Sato M (2004) Bone neoplasms in F344 rats given teriparatide [rhPTH(1–34)] are dependent on duration of treatment and dose. Toxicol Pathol 32(4):426–438

    Article  CAS  PubMed  Google Scholar 

  108. Watanabe A, Yoneyama S, Nakajima M, Sato N, Takao-Kawabata R, Isogai Y et al (2012) Osteosarcoma in Sprague-Dawley rats after long-term treatment with teriparatide (human parathyroid hormone (1–34)). J Toxicol Sci 37(3):617–629

    Article  CAS  PubMed  Google Scholar 

  109. Gilsenan A, Midkiff K, Harris D, Kellier-Steele N, McSorley D, Andrews EB (2021) Teriparatide did not increase adult osteosarcoma incidence in a 15-Year US postmarketing surveillance study. J Bone Miner Res 36(2):244–251

    Article  PubMed  Google Scholar 

  110. Malouf-Sierra J, Tarantino U, García-Hernández PA, Corradini C, Overgaard S, Stepan JJ et al (2017) Effect of teriparatide or risedronate in elderly patients with a recent pertrochanteric hip fracture: final results of a 78-week randomized clinical trial. J Bone Miner Res 32(5):1040–1051

    Article  CAS  PubMed  Google Scholar 

  111. Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V et al (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391(10117):230–240

    Article  CAS  PubMed  Google Scholar 

  112. Liu CL, Lee HC, Chen CC, Cho DY (2017) Head-to-head comparisons of bisphosphonates and teriparatide in osteoporosis: a meta-analysis. Clin Invest Med 40(3):E146–E157

    Article  PubMed  Google Scholar 

  113. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N et al (2012) Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine (Phila Pa 1976) 37(23):E1464–E1468

    Article  PubMed  Google Scholar 

  114. Ebata S, Takahashi J, Hasegawa T, Mukaiyama K, Isogai Y, Ohba T et al (2017) Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: a multicenter, prospective randomized study. J Bone Joint Surg Am 99(5):365–372

    Article  PubMed  Google Scholar 

  115. Govindarajan V, Diaz A, Perez-Roman RJ, Burks SS, Wang MY, Levi AD (2021) Osteoporosis treatment in patients undergoing spinal fusion: a systematic review and meta-analysis. Neurosurg Focus 50(6):E9

    Article  PubMed  Google Scholar 

  116. Cho PG, Ji GY, Shin DA, Ha Y, Yoon DH, Kim KN (2017) An effect comparison of teriparatide and bisphosphonate on posterior lumbar interbody fusion in patients with osteoporosis: a prospective cohort study and preliminary data. Eur Spine J 26(3):691–697

    Article  PubMed  Google Scholar 

  117. Oba H, Takahashi J, Yokomichi H, Hasegawa T, Ebata S, Mukaiyama K et al (2020) Weekly teriparatide versus bisphosphonate for bone union during 6 months after multi-level lumbar interbody fusion for osteoporotic patients: a multicenter, prospective, randomized study. Spine (Phila Pa 1976) 45(13):863–871

    Article  PubMed  Google Scholar 

  118. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N et al (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976) 38(8):E487–E492

    Article  PubMed  Google Scholar 

  119. Kaliya-Perumal AK, Lu ML, Luo CA, Tsai TT, Lai PL, Chen LH et al (2017) Retrospective radiological outcome analysis following teriparatide use in elderly patients undergoing multilevel instrumented lumbar fusion surgery. Medicine (Baltimore) 96(5):e5996

    Article  CAS  PubMed  Google Scholar 

  120. Inoue G, Ueno M, Nakazawa T, Imura T, Saito W, Uchida K et al (2014) Teriparatide increases the insertional torque of pedicle screws during fusion surgery in patients with postmenopausal osteoporosis. J Neurosurg Spine 21(3):425–431

    Article  PubMed  Google Scholar 

  121. Sleeman A, Clements JN (2019) Abaloparatide: A new pharmacological option for osteoporosis. Am J Health Syst Pharm 76(3):130–135

    Article  PubMed  Google Scholar 

  122. Tella SH, Kommalapati A, Correa R (2017) Profile of abaloparatide and its potential in the treatment of postmenopausal osteoporosis. Cureus 9(5):e1300

    PubMed  PubMed Central  Google Scholar 

  123. Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316(7):722–733

    Article  CAS  PubMed  Google Scholar 

  124. Arlt H, Besschetnova T, Ominsky MS, Fredericks DC, Lanske B (2021) Effects of systemically administered abaloparatide, an osteoanabolic PTHrP analog, as an adjuvant therapy for spinal fusion in rats. JOR Spine 4(1):e1132

    Article  CAS  PubMed  Google Scholar 

  125. Bandeira L, Lewiecki EM, Bilezikian JP (2017) Romosozumab for the treatment of osteoporosis. Expert Opin Biol Ther 17(2):255–263

    Article  CAS  PubMed  Google Scholar 

  126. Paik J, Scott LJ (2020) Romosozumab: a review in postmenopausal osteoporosis. Drugs Aging 37(11):845–855

    Article  CAS  PubMed  Google Scholar 

  127. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543

    Article  CAS  PubMed  Google Scholar 

  128. Miller SA, St Onge EL, Whalen KL (2021) Romosozumab: a novel agent in the treatment for postmenopausal osteoporosis. J Pharm Technol 37(1):45–52

    Article  CAS  PubMed  Google Scholar 

  129. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377(15):1417–1427

    Article  CAS  PubMed  Google Scholar 

  130. Kim G, Inage K, Shiga Y, Mukaihata T, Tajiri I, Eguchi Y et al (2022) Bone union-promoting effect of romosozumab in a rat posterolateral lumbar fusion model. J Orthop Res. https://doi.org/10.1002/jor.25287

    Article  PubMed  Google Scholar 

  131. Wright JG, Einhorn TA, Heckman JD (2005) Grades of recommendation. J Bone Jt Surg Am 87:1909–1910

    Article  Google Scholar 

  132. Pennestrì F, Corbetta S, Favero V, Banfi G (2019) Fragility fracture prevention-implementing a fracture liaison service in a high volume orthopedic hospital. Int J Environ Res Public Health 16(24):4902

    Article  PubMed  PubMed Central  Google Scholar 

  133. Miller AN, Lake AF, Emory CL (2015) Establishing a fracture liaison service: an orthopaedic approach. J Bone Joint Surg Am 97(8):675–681

    Article  PubMed  Google Scholar 

  134. Bogoch ER, Elliot-Gibson V, Beaton D, Sale J, Josse RG (2017) Fracture prevention in the orthopaedic environment: outcomes of a coordinator-based fracture liaison service. J Bone Joint Surg Am 99(10):820–831

    Article  PubMed  Google Scholar 

  135. Sethi R, Buchlak QD, Yanamadala V, Anderson ML, Baldwin EA, Mecklenburg RS et al (2017) A systematic multidisciplinary initiative for reducing the risk of complications in adult scoliosis surgery. J Neurosurg Spine 26(6):744–750

    Article  PubMed  Google Scholar 

  136. Halpin RJ, Sugrue PA, Gould RW, Kallas PG, Schafer MF, Ondra SL et al (2010) Standardizing care for high-risk patients in spine surgery: the Northwestern high-risk spine protocol. Spine (Phila Pa) 35(25):2232–2238

    Article  Google Scholar 

  137. Mori T, Crandall CJ, Ganz DA (2019) Cost-effectiveness of sequential teriparatide/alendronate versus alendronate-alone strategies in high-risk osteoporotic women in the us: analyzing the impact of generic/biosimilar teriparatide. JBMR Plus 3(11):e10233

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li N, Cornelissen D, Silverman S, Pinto D, Si L, Kremer I et al (2021) An updated systematic review of cost-effectiveness analyses of drugs for osteoporosis. Pharmacoeconomics 39(2):181–209

    Article  PubMed  Google Scholar 

Download references

Funding

This study has received no funding.

Author information

Authors and Affiliations

Authors

Contributions

ASZ, SK, MB-C, DA: conceptualization, literature review, writing–original draft, writing–review and editing, approved for publication, agree to be accountable. AHD: conceptualization, writing–review and editing, supervision, approved for publication, agree to be accountable.

Corresponding author

Correspondence to Alan H. Daniels.

Ethics declarations

Conflict of interest

Author Andrew S. Zhang declares no conflict of interest. Author Surya Khatri declares no conflict of interest. Author Mariah Balmaceno-Criss declares no conflict of interest. Author Daniel Alsoof declares no conflict of interest. Author Alan Daniels declares the following conflict of interests: Consulting fees from Stryker, Orthofix, Spineart, and EOS. Research support from Southern Spine, and Fellowship support from Orthofix.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. This is a review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the author name Andrew S. Zhang was incorrectly written as Andrew Zhang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A.S., Khatri, S., Balmaceno-Criss, M. et al. Medical optimization of osteoporosis for adult spinal deformity surgery: a state-of-the-art evidence-based review of current pharmacotherapy. Spine Deform 11, 579–596 (2023). https://doi.org/10.1007/s43390-022-00621-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-022-00621-6

Keywords

Navigation